The paper has discussed such problims as the properties of sub-eigenvalue and sub-eigenvector of real-anti-sub-symmetric matrix,and its diagonalization.
讨论了实反次对称矩阵的次特征值与次特征向量的性质及实反次对称矩阵的对角化问题。
An algorithm to recognize unconstrained handwritten numerals based on centroid layer feature is proposed in this paper.
采用了基于字符质心的层次特征对无约束手写体数字进行分类识别。
Some main properties of sub-characteristic value of general real matrix are given,and sub-characteristic value of(anti) asymmetric matrix,(anti) sub-symmetric matrix,sub-orthogonal matrix,involutary matrix and idempotent matrix is studied.
给出了一般实方阵次特征值的一些主要性质,并对(反)对称阵、(反)次对称阵、次正交矩阵,以及对合矩阵与幂等矩阵的次特征值的取值情况进行了研究,得到了一些新结果。
This paper includes theorems such as the one that the real parts of the sub-characteristic values belonged to an n-square metapositive definite complex matrix are positive,and that if JA is a normal composite matrix,then A is a metapositive definite complex matrix if and only if the real part of the sub-characteristic value belonged to A is real.
研究了复矩阵的次正定性的性质和一系列充分必要条件,得到了“n阶次正定复矩阵的次特征值实部为正”与“当JA为复正规矩阵时,A是次正定复矩阵的充分必要条件是A的次特征值实部为正”等结论;讨论并给出了矩阵乘积是次正定复矩阵的充分和充要条件;得到了与著名的Ostrowski-Taussky不等式、Hadamard不等式、Oppenhein不等式等相应的重要结果。
It was proved that the real parts of the sub-characteristic values of an n-order metapositive semi-definite matrix are positive and,when JA is a normal real matrix,then A is a metapositive semi-definite matrix if and only if the real part of the sub-characteristic value of A is real.
研究了次亚正定矩阵的性质和一系列充分必要条件,主要得到了2 个结论:(1) n阶次亚正定矩阵的次特征值实部为正;(2) 当JA为实正规矩阵时,A是次亚正定矩阵的充分必要条件是A 的次特征值实部为正。
This paper discusses inverse problems of secondary eigenvalue for anti-skew-symmetric matrices on a linear manifold.
讨论了线性流形上次反对称矩阵的次特征值的反问题,给出了解存在的条件,并给出了解的通式。
The Differentiability of Characteristic Value and Characteristic Vector in Quadratic Characteristic Value Problem
二次特征值问题中特征值和特征向量的可微性
Spectral Inclusion Regions of Partitioned Matrices and Inclusion Regions of Inhomogeneous Eigenvalue;
分块矩阵特征值包含域和非齐次特征值包含域
CALCULATION OF THE FIRST AND SECOND ORDER PARTIAL DERIVATIVES OF EIGENPAIRS OF QUADRATIC EIGENVALUE PROBLEMS
二次特征值问题特征对的一阶与二阶偏导数
Numerical Approaches to Robust Partial Quadratic Eigenvalue Assignment Problems
鲁棒部分二次特征值配置问题的数值方法
Structured Quadratic Inverse Eigenvalue Problems from the Second-order RLC Circuit Designing
二阶RLC电路设计中的结构化二次特征值反问题
Solving Method for Structured Quadratic Inverse Eigenvalue Problem
带结构的二次特征值反问题的求解方法
A direct projection method with refined vector for quadratic eigenvalue problems
求解二次特征值问题的添加精化向量的直接法
Symmetric and Skew Anti-symmetric Solution of Inverse Quadratic Eigenvalue Problem and Its Optimal Approximation
二次特征值反问题的对称次反对称解及其最佳逼近
A refined second-order Arnoldi method;
求解大型稀疏二次特征值问题的精化的二阶Arnoldi方法
Dirichlet eigenvalue estimates for p-sub-Laplacian in the Heisenberg group;
Heisenberg群上p-次Laplace算子的Dirichlet特征值估计
The Analysis of Anisotropic Property of Quadratic Triangular Element;
三角形二次元插值的各向异性特征分析
Study on a Class of Inverting Higher Degree Adjoint Matrix and Eigenvalues;
一类逆高次伴随矩阵及其特征值的研究
The Characteristic Values and the Standard Form of a Quadratic Form Represented with a Real Symmetrical Determinant;
实对称行列式表示的二次型的特征值与标准形
Study on existence of eigenvalue for sub-laplacian on Heisenberg group
Heisenberg群上的次拉普拉斯算子特征值存在性证明
The numerical simulative analysis on characteristic of boundary layer in MCS on 5 July,2004
一次东北冷涡MCS边界层特征数值模拟分析
Lloyd's numeral
劳氏特征数特征的数值)
The roots ?? of the characteristic equations are known as eigenvalues, or Characteristic Values.
特征方程之根??称为本征值或特征值。
Research on Sturm-Liouville Eigenvalue Problems
Sturm-Liouville特征值问题
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号