The formula for area of triangle on ellipsoid by means of geodesic coordinate is derived in this paper.
推导出用三顶点的测地坐标计算地球椭球面上三角形面积的公式。
This digital terrain model (DTM) based on the ellipsoidal surface is essentially different from DTM based on projected plane because the Delaunay triangulation net is built based on geodesic coordinate system on regional ellipsoidal surface.
作为其中之一,首先来定义椭球面三角形的外接大地圆,然后推导出在测地坐标系中确定外接大地圆圆心的公式和算法。
Another type of geodesic coordinate system with length quantity as coordinate parameter is present for the first time in our last paper .
从数学上论证以长度量为坐标参数的测地坐标系与大地坐标系能够成为表述 3维欧氏空间中点位的正则坐标系的条件及限定区域 ,然后着重阐述了测地坐标系与大地坐标系相互转换的基本原理和方法 ,并用算例验证了其正确性 ,从而为进一步实现测地坐标系应用于DEM和 3DGIS建模提供了可能 ,这就为最终解决在统一的真 3维坐标系统中建立DEM和 3DGIS奠定了基
In this paper, the principle and method of 3D visualization by geodesic coordinate system of ellipsoidal surface are proposed.
在椭球面数字地面模型 (DTM)的基础上 ,结合道路设计领域的特点 ,将空间实体划分为独立点状实体、线实体、紧贴于地面的面实体和体实体等类型 ,通过空间现象与椭球面DTM的叠加 ,首次提出了一种直接基于椭球面的三维GIS可视化模型 ,具体实现了道路、河流、湖泊、建筑物等实体模型 ,并进一步探讨了基于椭球面上测地坐标系统的三维可视化方法 ,从而真正实现了在一个统一的真三维坐标系中表达和处理空间现象 。
This paper proposes the principle and method of ellipsoid-based DTM,which is essentially different from DTM based on projected plane because it is built based on geodesic coordinate system on regional ellipsoid.
这种椭球面DTM是在区域性椭球面上基于测地坐标系建立起来的 ,因此不同于基于投影平面的现有的DTM 。
The relationship between the azimuth and the defined direction angle in the geodesic coordinate system is therein obtained.
应用微分几何和大地测量理论 ,提出并推证了在地球椭球面上的局部区域内以测地坐标为坐标参数的大地线二阶微分方程和一阶微分关系式 ,其间定义了在测地坐标系中大地线的方向角 ,并得出该方向角与大地方位角的关系式 。
As a continuation of 〔1〕 and 〔2〕, we offer some characteristics of semi geodesic coordinates net such as depiction in equal value and so on, which applications are simple and efficient.
本文是〔1〕、〔2〕的继续,给出了半测地坐标网的等价刻划等一些性质,其应用是简便易行
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号