It is obtained that Iα is a bounded operator from Lp(Rn) into the Lorentz space Lq,∞(Rn).
证明了Iα是从Lp(Rn)到Lorentz空间Lq,∞(Rn)的有界算子,同时还证明了增长条件μ(S(x,r))≤Crn,x∈Rn,r>0是上述结论成立的必要条件。
Some necessary and sufficient conditions are given for which M_(φ) is a bounded operator from B~α to B~β_0(respectively,from B~α_0 to B~β).
研究单位圆盘上的小B loch型空间B0α和B loch型空间Bβ之间的点乘算子M,在多种情况下给出了M是从Bα(B0α)空间到B0β(Bβ)空间的有界算子的充分必要条件。
This note proves that for every f∈C(\;X), the continuous functionu,u(t)=∫ t 0S(t-s)f(s) d s, t∈is a strong (classical) solution of the second inhomogeneous zero initial value problem u″=Au+f, in \, iff A is a bounded operator in X.
本文证明了 ,对每个 f∈ C([0 ,T];X) ,连续函数u,u(t) =∫t0 S(t-s) f (s) ds,t∈ [0 ,T]是二阶非齐次 0初值问题 u″=Au+f 的强解的充要条件是 :A是空间 X中的有界算子 。
Well-bounded operators are those which possess a bounded functional calculus for the absolutely continuous functions on some compact intervals.
良有界算子是这样一类算子,它对于在某个紧区间上绝对连续的函数具有有界的函数演算。
Shows that R(X),the class of Riesz operators,on a Σ1e type Banach space is equal to In(X),the ideal of inessential operators, so R(X) is a closed by operator norm,two-sided ideal in B(X) of co-dimension one;gives some properties of well-bounded operators on such spaces.
证明了Σe1型Banach空间X上黎斯算子类R(X)就等于非本性算子理想In(X),从而R(X)是B(X)中亏维为1的依算子范数闭的双侧理想;给出Σe1型Banach空间上良有界算子的一些性质。
The semibounded operators in Menger PN spaces;
Menger PN空间上的半有界算子(英文)
Relationship among semi-bounded operators bounded operators and continuous operators
拟有界算子与有界算子、连续算子间的关系
Properties of Riesz Operators and Well-bounded Operators on Σ_e~1 Type Banach Spaces
Σ_e~1型Banach空间上黎斯算子和良有界算子的性质
The Boundedness of Operator with Respect to Vilenkin-Like System;
Vilenkin-Like系统上算子有界性
The strong boundedness,boundedness, continuous of the operator T;
算子T的强有界、有界和连续性问题
Iterative Algorithms for Approximating Solutions of Operator Equations Governed by Strongly Monotone and Boundedly Lipschitzian Operators
强单调有界Lipschitz算子方程解的迭代算法
Boundedness of Fourier Integral Operator and of Multilinear Commutators of Marcinkiewicz Integral Operator;
Fourier积分算子和Marcinkiewicz积分算子的交换子的有界性
Boundedness of the Commutators of Littlewood-Paley Operators;
Littlewood-Paley算子交换子的有界性问题
Boundedness for a Class of Marcinkiewicz Integral Operators and Its Commutators;
Marcinkiewicz积分算子及其交换子的有界性
Mbekhta s Subspaces and Invertibility of Operators;
MBEKHTA子空间与有界线性算子的可逆性
Boundedness of Commutators of Generalized Calderón-Zygmund Operators;
广义Calderón-Zygmund算子交换子的有界性
Boundedness of Multilinear Commutators of Littlewood-Paley Operator
Littlewood-Paley算子的多线性交换子的有界性
The Boundedness of Commutator of Multilinear Singular Integral Operator of Calderón-Zygmund
多线性Calderón-Zygmund算子交换子的有界性
Boundedness for Commutators of Littlewood-Paley Operators on Hardy-Lorentz Spaces
Littlewood-Paley算子交换子的有界性
Boundedness of Littlewood-Paley operators and its commutators
Littlewood-Paley算子及其交换子的有界性
On Boundedness,Stronge Boundedness and Continuity of Additive Operators
关于可加算子的有界、强有界与连续性研究
The Boundedness for Multilinear Commutator of Multiplier Operator
乘子算子的多线性交换子的有界性研究
The Boundedness of Multilinear Commutators of Marcinkiewicz Operator;
多线性Marcinkiewicz算子有界性研究
The Asymptotic Trace of Dirac Eigenvalue Problem with Unlocal Boundary Conditions;
带有非局部边界条件的Dirac算子的迹
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号