The feature of symmetric canonical form and the relation between the LU polynomial invariants and SLOCC classification in pure three-qubit case are presented at first.
首先介绍了三量子比特纯态情形对称正则形式的特点和LU多项式不变量与随机LOCC分类的关系。
Notes on polynomial invariants of K(A,B) and K(P_1,P_2,…,P_n).;
关于K(A,B)与K(P_1,P_2,…,P_n)的多项式不变量的几点注记
Polynomial Invariant on Algebra Split Links and Braid Array;
代数分离环链上的多项式不变量及辫子阵
a polynomial in one variable.
只有一个变量的多项式。
Object Recognition Based on Euclidean Invariants of Implicit Polynomial Curves
基于隐含多项式曲线欧氏不变量物体识别
The greatest sum of the exponents of the variables in a term of a polynomial or polynomial equation.
次数多项式或多项式方程中变量的幂的最大数
A homogeneous polynomial having two or more variables.
多元齐次多项式有两个或多个变量的齐次多项式
RESULTS AND PROBLEMS FOR PRIME FACTORIZATIONS MULTIVARIATE POLYNOMIAL MATRICES
多变量多项式矩阵素分解的结果和问题
ESTIMATION FOR POLYNOMIAL REGRESSION FUNCTION OF RANDOM INDEPENDENT VARIABLE
随机自变量多项式回归函数的估计问题
A score fusion algorithm based on the multivariate polynomial model
基于多变量多项式模型的多模态生物特征分数层融合算法
Nonexistence of Polynomial First Integrals for Quadratic Planar Vector Systems
平面二次向量场多项式首次积分的不存在性
bivector multinomial distribution
二维向量多项式分布
ON the inequalities for derivatives of Lorentz type vector polynomials in B(p,q)-norm;
关于Lorentz型向量多项式导数在B(p,q)范数下的不等式
Although the number of variables will differ from project to project, it is typical to find 15 to 30 variables per role.
虽然我们做过的每个项目中的变量的数量不同,但差不多都是每个岗位15~30个变量。
Strong Converse Inequality for Multivariate Stancu Polynomials
多元Stancu多项式的强逆不等式
The Involving Fraction Sum of Generalized Chebyshev Polynomial
广义Chebyshev多项式分式变换之和
A Novel LMI Approach to the Robustly Exponential Stability for Linear Time-Invariant Parameter-Polynomial Systems
线性时不变参数多项式系统鲁棒指数稳定性的LMI方法
The Irreducible Quadratic Factorizations of the Polynomial x~n-bx-a;
多项式x~n-bx-a的二次不可约因式
Recurrence Formula for Unreliability Polynomial of Graphs
图的不可靠性多项式的递推公式(英文)
A Method to Verify the Polynomial Positive Definiteness;
单变元多项式正定性的一种判定方法
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号