In this paper,characterizations of harmonic α-Bloch function and harmonic little α-Bloch function are given by means of increasing functions,which extends earlier results of the second author.
用给定的增函数刻画调和α-Bloch函数和调和小α-Bloch函数的特征,它们改进了第二作者早期的一些结果。
Harmonic α-Bloch and harmonic little α-Bloch functions;
调和α-Bloch函数和调和小α-Bloch函数
The Infinitesimal Generator under G-expectation, the g-supermartingale and g-superharmonic Function;
g-期望的无穷小生成元,g-上鞅与g-上调和函数
Some Properties ofφ-Harmonic Functions andφ-Subharmonic Functions on Riemannian Manifolds;
黎曼流形上的φ-调和函数和φ-次调和函数的几点性质
THEORY OF HARMONIC FUNCTIONS OF CLASSICAL DOMAINS(Ⅰ)--HARMONIC FUNCTIONS IN THE HYPERBOLIC SPACE OF MATRICES
典型域上的调和函数论(Ⅰ)——矩阵双曲空间的调和函数
Monotonicity properties and inequalities of gamma and psi functions
Gamma函数和Psi函数的单调性质与不等式
A Method of Making an Analysis Function From a Harmonic Function
由调和函数构造解析函数的一种方法
The Criteria of Harmonic α-Bloch Function and Harmonic Little α-Bloch Function;
调和α-Bloch函数和调和小α-Bloch函数的判别准则
Harmonic Functions, Hardy Spaces and Carleson Measures on Negetively Curved Manifolds
负曲率流形上的调和函数,Hardy空间与Carleson测度
cylindric(al) harmonics
柱谐[圆柱, 调和]函数
Research on several qualities of harmony function and order harmony function;
关于调和函数与次调和函数的几个性质的研究
Complete Monotonicity and Strongly Complete Monotonicity Properties for the Gamma and Psi Functions
GAMMA函数和PSI函数的完全单调性和强完全单调性
On Approximation of the Abel Sums for Bounded Variation Functions and ω-type Monotonic Functions;
Abel 和对有界变差函数及ω-型单调函数的逼近
Approximation of the Fejér Sum of Chebyshev-fourier Series for the ω-type Monotomic Functions;
Chebyshev-Fourier级数Fejér和逼近ω-型单调函数
Remarks on Biharmonic Green Function;
关于双调和Green函数的若干注记
Harmonic Quasiconformal Deformation Extensions of Zygmund Functions
Zygmund函数的调和拟共形形变延拓
Some properties for several kinds of harmonic functions in Clifford analysis
Clifford分析中几类调和函数的性质
A Simple Proof for the Higher Integrability of A-harmonic Functions
A-调和函数高阶可积性的简单证明
stress functions and displacement functions
应力函数和位移函数
The expressions of temperature distribution function and displacement function of a easing string by steam flooding are worked out respectively by separate variable method and harmonic function method.
用分离变量法和调和函数法分别求解套管温度分布函数和位移函数表达式。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号