Study on SVM based on posterior probability for individual mortgage loan;
基于后验概率的住房信贷评估SVM模型
Application of posterior probability to multiclass SVM;
后验概率在多分类支持向量机上的应用
Edge detection algorithm of Canny based on maximum between-class posterior probability
一种基于最大类间后验概率的Canny边缘检测算法
A novel segmentation method based on Markov Random Field(MRF) and Support Vector Machine(SVM) posteriori probability is proposed in the paper.
提出了一种基于SVM后验概率的MRF分割方法,将支持向量机的后验概率应用于Markov随机场方法中,通过贝叶斯公式将对样本条件概率的估计转换为后验概率估计,再通过对SVM决策函数输出的映射来产生后验概率,并将SVM估计的后验概率信息带入MRF模型实现分割,从而完成了一种新的Markov随机场模型的分割方法。
In the recognition stage,order parameters are converted to posteriori probability,then voting and ensemble of posteriori probability based on add rule are used respectively to get finally results;and an improved method for ensemble of posteriori probability based on add rule is also proposed in order.
选择不同的训练样本作为原型模型,以增加原型模型的多样性;识别时,将序参量转化为后验概率,分别运用投票法和基于和的后验概率集成方法进行识别,并提出了一种改进的基于和的后验概率集成方法,来提高集成的效果。
But standard support vector machines do not provide posteriori probability.
目前支持向量机解决模式识别问题是广大学者研究的热点,样本的后验概率在模式识别中至关重要,但是传统的支持向量机技术不提供后验概率。
Combining evaluation model based on Logistic regression and posterior probability SVM for residential loan;
基于Logistic回归和后验概率SVM的住房贷款组合评估模型
The authors study a new method on how to classify a sample into one of the several known population in terms of posterior probability ratio established by the sample s predictive density functions when the unknown parameters prior distributions are normal-inverted Wishart distribution.
研究了各总体服从正态分布、分布参数的先验分布均为正态—逆Wishart共轭先验时 ,如何利用待判样品的预报密度函数 ,构造后验概率比和分类判别规则 ,并据此对样品进行分类识别 ;该方法的特点是充分利用了参数分布的信息 ,结论简单、直观 ,并且也不需要假设各总体的协方差阵相
In this paper,the authors study a method on how to classify a sample into one of the several known normal populations in terms of posterior probability ratio established by the samples predictive density functions when the unknown parameters prior distributions are diffuse prior distribution.
本文研究了各总体服从多元正态分布 ,其未知参数的先验分布均为扩散先验分布时 ,如何利用待判样品的预报密度函数、构造后验概率比并据此对样品进行分类与判别 ;此方法并不需要假设各总体分布的协方差相同 ,而且在预试样本容量较小时仍然可行。
On the Value of Information by Discussing Anterior Probability & Posterior Probability;
由先验概率和后验概率谈信息的价值
Inverse probability criterion
反概率准则(后验概率准则)
The Commercial Banks Housing Credit Assessment Model is Set up by Using the SVM;
基于后验概率的住房信贷评估SVM模型
Personal Credit Scoring Based on Posterior Probability SVM;
基于后验概率的个人信用评估SVM模型
Posterior probability criterion for learning bayesian networks
Bayes网络学习的后验概率准则
Fuzzy Support Vector Machine Based on Posterior Probability Weight
基于后验概率加权的模糊支持向量机
Application of Posteriori Probability SVM in Enterprise Credit Assessment Model;
后验概率支持向量机在企业信用评级中的应用
Posterior probability based indexing method for Chinese spoken document retrieval
汉语语音文档检索中后验概率的索引方法
Study on Chinese speech retrieval based on posterior probability
基于后验概率的汉语语音检索方法研究
Video Object Segmentation Based on MAP of Pixel Blocks
基于像素块最大后验概率的视频对象分割方法
Edge detection algorithm of Canny based on maximum between-class posterior probability
一种基于最大类间后验概率的Canny边缘检测算法
Resolution restoration algorithm based on maximum a posteriori from Poisson-Markov distribution and blind multichannel deconvolution
基于Poisson-Markov分布最大后验概率的多通道超分辨率盲复原算法
Combining evaluation model based on Logistic regression and posterior probability SVM for residential loan;
基于Logistic回归和后验概率SVM的住房贷款组合评估模型
A Study and Application of Weighted Fuzzy Support Vector Classifiers Based on Posteriori Probability
基于后验概率加权的模糊支持向量分类机研究及应用
An Improved Weighted Posterior Probability Reconstruction Strategy for Multi-class Support Vector Machine
一种改进多类支持向量机加权后验概率重构策略
Posterior probability-based information cost and efficiency gaming research for preventing serious disasters
巨灾预防后验概率的信息成本和效益的博弈分析
Multiple Fault Diagnosis Strategy Based on Maximum Posterior Probability Candidate Fault Set Replace Method
基于最大后验概率候选集更换法的多故障诊断策略研究
SVM with Posteriori Probabilistic Output Applied in Multi-class Brain Computer Interface
支持向量机后验概率方法在多任务脑机接口中的应用
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号