By curved surface integration and variable upper bound integration an upper bound analytic solution is obtained for drawing stress.
采用VonKarman基本假设对模面函数为抛物线(又称喇叭模)的轴对称拔制问题设定了运动许可速度场,并经[曲]面积分与变上限积分得到拔制应力上界解析解。
Transformation formula of space coordinates for surface integrals;
关于[曲]面积分的空间坐标变换公式
The surface integral is applied to the friction power.
对模面曲线为椭圆的拔制圆棒问题设定了运动许可速度场,对该场以[曲]面积分确定了摩擦功率;以双剪应力屈服准则和变上限积分确定变形功率并得到拔制力的上界解析解。
This article indicates one wrong way to solve the problem of calculating surface integral,which appears in the reference of Higher Mahematics(the fifth edition),teaching material compiled by Tongji University,analyses the cause and gives the right way.
指出了同济大学第五版《高等数学》教材的配套参考书上([1]、[2]、[3]、[4]、[5]),关于计算[曲]面积分一题的解法错误所在,分析了错误的原因,给出了正确解法。
Calculating the static electrical field intensity s distribution with curved surface integral;
用[曲]面积分计算静电场的电场强度分布
Some analysis are given on symmetry between integrated funtion and domain integral,domain integral between curved surface and repeated integral,domain projection of the curved surface integral,and some notes are also given.
针对多元函数积分运算中的几种常见错误,即:对被积函数及积分区域的对称性、面积分及重积分的积分区域、[曲]面积分的投影区域等几个方面进行了剖析,并给出几点注意事项。
To definite integral,the double integral and the triple integral as well as the curvilinear integral and the curved surface integral concepts carry on the analysis.
对定积分,二重积分和三重积分以及曲线积分和[曲]面积分的概念进行分析,主要从概念的引入,定义概念的基本思想及应用三方面加以阐述。
The method of determining symbol of double integral transformed from the second-king surface integral;
第二型[曲]面积分转化为重积分的定号方法
This paper gives the conversion formula from the first type surface integral to the first type curvilineal, and sets a example of using the method to solve exercises.
本文建立了一种特殊的第一型[曲]面积分与第一型曲线积分的转化公式,并通过实例表明该方法在解决问题时所带来的方便。
In this paper,the application of symmetry method is discussed in calculating curve integral and surface integral type 2,and some useful conclusions and examples are given.
本文探讨了对称性在第二类曲线积分和第二类[曲]面积分中的应用,给出了一些有用的结论,并举例说明。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号