您好,欢迎访问优校网! 收藏本页 手机访问
今天是:

self-adjiont operator是什么意思


中文翻译自伴算符

网络释义

1)self-adjiont operator,自伴算符2)Self companying operator method,自伴算符法3)self-adjoint,自伴4)self-adjoint extension,自伴延拓5)self-adjoint operators,自伴算子6)self-adjoint operator,自伴算子

用法例句

    This paper studied the self-adjoint and essential self-adjoint characteristics of weighted composition operators in Bergman space.

    研究了经典Bergman空间上加权复合算子的自伴性与本质自伴性。

    By use of characterization of complete Lagrangian manifolds and the one to one correspondence between complete Lagrangian manifolds and self-adjoint extension,the description of one dimensional regular Dirac operator s self-adjoint domains is presented.

    利用辛几何的理论来描述一维Dirac算式在区间[a,b]上的自伴域,通过刻划辛空间的完全Lagrange子流形并利用完全Lagrange子流形与自伴延拓一一对应得到Dirac算子自伴域的完全刻划。

    In this paper, we study self-adjoint extensions and their spectrum of Laguerrc operator defined on the domain I = (0,8).

    本文研究了区间I=(0,∞)上的Laguerre算子L=-D~2+x~2/(16)-1/(4x~2)-1/2的自伴延拓及其谱。

    Examples prove that the product of two self-adjoint operators may not be a self-adjoint operators and the product of two different non-self-.

    该文主要讨论了由正则和奇异的4阶对称微分算式生成的微分算子的积算子的自伴性,得到了I(I=[a,b]或[a,+∞))上的积算子L=L2L1是自伴算子,当且仅当AQ_4~(-1)(0)C=BQ_4~(-1)(0)D;I上的幂算子L_1~(2)是自伴的充要条件是L1是自伴的,并且给出了反例,说明2个自伴算子的积不一定是自伴算子,不同的非自伴算子的积可以是自伴算子。

    In this paper,the adjointness of the product of three differential operators were discussed by means of the construction theory of self-adjoint operators and matrix computation,and generated by a second order symmetric differential expression,including ordinary and singular two cases.

    利用自伴算子的基本理论及矩阵运算,讨论了由正则和奇异的二阶对称微分算式生成的微分算子的积算子的自伴性,得到了3个算子的积算子是自伴的充分必要条件。

    This paper mainly studies the solutions of the nonlinear Schrodinger equation with a small parameter; gives the properties of the eigenstates for the self-adjoint operator, namely, the orthogonality and completeness; introduces the perturbation theory in which people get the approximate solution of differential equations.

    本文主要研究了一类带有小扰动参数的非线性Schr(?)dinser方程的求解问题,讨论了自伴算子的本征函数的正交性和完备性,介绍了寻求微分方程的近似解常用的摄动方法,并从带有某种扰动项的NLS方程出发,利用多重尺度的摄动方法得到了方程的零级近似方程和一级近似方程,通过对近似方程中算子的特征态的讨论,引入适当的“导出态”,建立了算子在L_2空间的特征态的完备性。