The Influence of optical fiber nonlinear dispersion on soliton-like propagation properties;
光纤非线性色散对类明孤子传输特性的影响
By use of the modified nonlinear Schrodinger equation, we have investigated numerically the effect of nonlinear dispersion, i.
本文采用包含延迟非线性响应时间(即等效的非线性色散)的非线性薛定谔方程,利用数值模拟从理论上系统地分析了非线性色散对孤子在有机高聚物中的形成及传输特性的影响,结果表明当有机高聚物具有较大的非线性色散时,与在一般无机材料光纤等具有较弱非线性色散下形成飞秒孤子的峰值功率条件相比较,必须较大地提高峰值功率才能实现非线性色散、群速度色散、自相位调制三者相互补偿下的孤子传输。
The results show that the ultrashort pulse would be narrow in the normal dispersion if the parameter of second-order nonlinear dispersion was less than zero,and the effects of its was gradually changing with the propagation distance getting smaller and smaller,and the pulse would be width if the parameter of fake-quintic nonlinearity.
结果表明,在正常色散区,二阶非线性色散系数为负时使脉冲变窄,而且它对脉冲影响的程度是随着传输距离不断变化的,影响越来越小;赝五阶非线性系数为负时使脉冲展宽,但与二阶非线性色散项相比影响较小;而自陡系数取值的可正、可负出现了使脉冲在传输过程中其中心位置前后沿均可偏移的现象。
The influence of dispersive magnetic permeability on propagation of untrashort pulses in metamaterials is mainly in that it leads to the appearance of the pseudo-χ (5) , self-steepening (SS) and second-order nonlinear dispersion terms in the propagation equations.
结果表明,在反常色散情形,赝五阶非线性在异向介质的负折射区中增大了调制频谱的范围及增益值,这与常规正折射介质中出现的现象正好相反;自陡峭效应在异向介质中有可能为负值,但无论正负,也无论在正折射区还是负折射区,它都抑制调制不稳定性的产生;二阶非线性色散效应在正、负折射区中分别促进和抑制调制不稳定性的产生。
Further,we study the influence of the controllable self-steepening effect and the second-order nonlinear dispersion on the formation and propagation of dark solitons in metamaterials.
利用一种扩展的双曲函数级数方法求解超常介质中的传输方程,得到了各种不同情形下的暗孤子解,分析了可控自陡效应和二阶非线性色散效应对孤子形成和传输特性的影响。
Riccati function solutions of nonlinear dispersive-dissipative mKdv equation
非线性色散耗散mKdv方程的Riccati函数解
On the Unique Continuation Property for a Nonlinear Dispersive System
一个非线性色散波方程的惟一连续性
Single Traveling Wave Solutions of a Class of Nonliner Dispersive Wave Equations
一类非线性色散波方程的奇异行波解
Global strong solutions for a class of nonlinear wave equations with dispersive and dissipative terms
一类非线性色散耗散波动方程的整体强解
Fourier Spectral Methods for a Class of Nonlocal, Nonlinear Dispersive Wave Equations
一类非局部非线性色散波方程的Fourier谱方法
New exotic solitary waves in one type of nonlinear dispersive equations
一类非线性色散方程中的新型奇异孤立波
New Compact and Noncompact Structures of solutions for the Nonlinear Dispersion K(n,k) Equations
非线性色散K(n,k)方程新的紧致子和非紧致子解(英文)
Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation
非线性耗散-色散方程行波解的存在性
Research of Dispersion and Nonlinearity in Microstructure Fiber;
微结构光纤的色散与非线性特性研究
Linear and Nonlinear Wave Models with Accurate Dispersion;
具有精确色散性的线性和非线性波浪模型
The Blow-up of Solutions of a Class of Nonlinear Dispersive-dissipative Equation
一类非线性耗色散方程解的Blow-up
Cross-phase Modulation Instability in Vicinity of Zero Dispersion Regions in Case of Saturable Nonlinearity
饱和非线性下零色散附近的交叉相位调制非稳
nondispersive X-ray analyzer
非色散x射线分析器
nondispersive X-ray spectrometer
非色散x射线光谱计
Numerical Study of the Dispersion and Nonlinear on Optical Transmission;
光纤传输中色散与非线性特性的数值计算研究
Optimal Control of a Class of Nonlinear Viscous Dispersive Wave Equations
一类非线性粘性色散波方程的最优控制
Research of Dispersion and Nonlinearity on Photonic Crystal Fiber
光子晶体光纤的色散与非线性特性研究
Derivation of dispersion relations of liquid film in sprays by nonlinear stability theory
液膜喷射色散关系式的非线性稳定性推导
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号