In order to analyze dynamics performances of a collaborative robot(cobot),modeling of a non-holonomic constraint joint mechanism based on double over-running clutches was completed.
为了分析合作机器人(Cobot)的动力学性能,根据Cobot的特点和单向超越离合器的特性,建立了基于双超越离合器的不完全约束关节机构的模型和Cobot关节机构的驱动控制模型,并仿真验证了该关节机构的被动约束特性。
In order to implement function of Cobot cooperation with human, modeling of non-holonomic constraint joint mechanism based on double over-running clutches was completed according to the features of Cobot and performances of unilateral over-running clutch.
为了实现Cobot与人合作的功能,建立了基于双超越离合器的不完全约束关节机构的模型和Cobot关节机构的控制模型。
In order to implement cobots direct cooperation with human, according to the features of cobots, the model of a non-holonomic constraint joint mecha-nism and its control model were constructed, and a control strategy was put forward.
为了实现cobot直接与人合作作业,根据cobot的特点,建立了不完全约束关节机构的模型和cobot的控制模型,提出了cobot的控制策略。
In this study a five-bar Cobot architecture based on differential gear is put forward by nonholonomic constraint feature of differential gear.
根据差动轮系的不完全约束特性,提出了基于差动轮系的五连杆式人机合作机器人模型。
Modeling of non-holonormic constraint joint mechanism and its con- trol model based on double over-running clutches were constructed.
为了实现 Cobot 与人合作,对 Cobot 的虚拟轨迹控制和不完全约束关节机构进行了研究。
In the paper modeling of non-holonormic constraint joint mechanism based on dual over-running clutch was completed according to the features of collaborative robot(Cobot),and simulation analysis was car- ried out.
根据合作机器人(Cobot)的特点,建立了基于双超越离合器的不完全约束关节机构模型,并对其进行了仿真分析,在此基础上建立了 Cobot 轨迹的控制模型。
Ideal constraint can be divided into complete ideal constraint or incomplete ideal constraint according as generalized ideal constraint forces equal to zero or not.
对于理想约束,按照广义理想约束力是否为零,把理想约束分为完全理想约束和不完全理想约束。
For the growth curve model with respect to a incomplete ellipsoidal restrictionY=XBZ+ε,~(0,σ2VI),X(B-B0)Z′NZ(B-B0)′X′≤σ2In.
对于带有不完全椭球约束的生长曲线模型Y=XBZ+ε,ε~(0,σ2VI),X(B-B0)Z′NZ(B-B0)′X′≤σ2In,本文在矩阵损失函数(d-KBL)(d-KBL)′下给出了KBL在类齐次线性估计类LH与非齐次线性估计类LI中可容许的充要条件。
This paper studies the admissibility of linear estimators in multivariate linear models with respect to an incomplete ellipsoidal restriction tr(Θ - Θ1) N(Θ - Θ1) ≤ σ2.
本文研究了多元线性模型当未知参数受不完全椭球约束tr(Θ-Θ1) N(Θ-Θ1) ≤σ2时线性估计的可容许性问题。
Admissibility of Linear Estimator in Linear Models with Respect to A Incomplete Ellipsoidal Restrictions
带有不完全椭球约束的线性模型中线性估计的可容许性
Linear Ademissible Estimator In Multivariate Linear Models With Respect to An Incomplete Ellipsoidal Restriction;
带有不完全椭球约束的多元线性模型中参数的线性容许估计
Admissibility of Linear Estimators in Multivariate Linear Models with Respect to an Incomplete Ellipsoidal Restriction
不完全椭球约束下多元线性模型线性估计的可容许性(英文)
The Score Examine of the Outlier for Linear Model with Ellipsoidal Restriction;
椭球约束线性模型异常点的Score检验
incomplete elliptic integral of the first kind
第一类不完全椭圆积分
Incomplete information、soft budget constraint and business groups;
不完全信息、预算软约束与企业集团
Linear Minimax Estimation in a Mixed Model under Ellipsoial Constraints;
椭球约束下混合模型的线性极小极大估计
Damping performance of grounded monolayer ovaloid shell with buckling-restraining braces
单层落地椭球壳约束屈曲支撑的减震性能
Semi uniform Processors Scheduling Problem with Dependent Tasks;
具有优先约束的不完全恒速机排序问题
Incomplete or arrested development of an organ or a part.
发肓不全一个器官或部分不完全的或受约束的发展
The Vibration Reducing Performance of the Single-layer Landing Oval Shell with Buckling Restrained Braces;
屈曲约束支撑在单层落地椭球网壳的减震性能分析
The Research on Vibration Reducing Performance of Single Layer Ellipse Lattice Shell Installed Buckling Restrained Braces;
应用屈曲约束支撑的单层椭球网壳减震性能研究
Her behavior was uninhibited, and she did as she pleased.
她的行为完全不受约束,她爱怎么做就怎么做就怎么做。
A credit by its nature is a separate transaction from the sale or other contract on which it may be based.
即使信用证中提及该合同,银行亦与该合同完全无关,且不受其约束。
Such constraints are said to be holonomic.
这种约束称为完整约束。
An Algebraic Multigrid Algorithm for Elliptic Variational Inequality with Obstacle and It s Parallel Processing;
椭圆型带约束变分不等式的一种代数多重网格解法及其并行处理
complete elliptic integral of the first kind
第一类完全椭圆积分
complete elliptic integral of the second kind
第二类完全椭圆积分
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号