Presents that geometric invariants in the perspective homology transformation group are applied to process and verify the solutions of 3D reconstruction for robot vision.
运用透视同素变换群中的几何不变量对机器人视觉中的三维重建的解进行处理和验证。
In this paper we show strict relation between the intuitionific fuzzy groups of transformation group in S and intuitionfic similarities on S,i.
研究集合S上的变换群的直觉模糊子群和S上的直觉相似关系之间的密切联系,证明了S上的变换群的任一直觉模糊子群可确定S上的一个直觉相似关系,反之,S上的任一个直觉相似关系可确定S上的变换群的一个直觉模糊子群。
Along the way of creating problem situation , guessing , testifying, refuting, re-guessing and re-testifying, a case of explorative teaching on a basic theorem of transformation group is given.
变换群是一类重要的群,按照创设问题情境、猜测、验证、反驳、再猜测、 再验证的探究思路,给出了变换群基本定理的一个具体探究教学设计。
In this paper,all symmetries of the generalized kdv equation are obtained by means of infinitesimal generator of Lie group of transformation.
本文用 Lie变换群的无穷小方法 ,求出了广义 kdv方程的全部对称 ,并用特殊的对称将其化为常微分方程 。
In this paper applying Morgan s two parameter transformation groups theory, we analyzed the similarity solution for incompressible unsteady laminar natural convective boundary layer flow on a vertical stretching sheet.
用Morgan的双参数变换群理论,对磁场作用下的伸展垂直薄片的不可压缩非定常层流自然对流边界层流动进行相似性分析,得到了三种情况下的相似性解方程组。
We assert here that a group generated by non\|bijective transformations on a set A is isomorphic to a permutation group on a subset of A,and prove that a non bijective transformation f on A occurs in a group consisting of non\|bijective transformations if and only if that the restriction to f(A) of f is bijective.
发现任意集合A上一个由非一一变换关于变换乘法构成的群与A的某个子集上一个变换群的同构 ;证明A上一个非一一变换f能出现在一个由A上变换构成的乘法群中当且仅当f(A)上的限制ResAf(A) f为f(A)上一一变换 。
Based on the assumptions of semi logarithmic relationship between coefficient of permeability and void ratio as well as the relationship between effective stress and void ratio of soil, the method of Lie Group Transformation is applied to solve the non linear partial differential equation of large strain consolidation of homogeneous saturated clay in semi infinite domain.
基于有效应力与孔隙比以及渗透参数与孔隙比之间的关系的一些假定 ,采用李群变换求解考虑材料非线性和几何非线性的半无限均质土体大变形固结非线性偏微分方程 ,得到了一个不考虑自重固结的完全解析解。
And its analytical solution under such conditions as initial and boundary conditions is obtained by the method of the Lie group transformation.
讨论了潜水一维非稳态运动Boussinesq方程的对称性,并采用Lie群变换,就某些边界条件求出了其解析解,以便与线性化近似理论作比较;在此基础上,分析了Boussinesq方程线性化所引起的误差问题,并得到了特定条件下严格的零误差线性化方法。
Such a group of formation is briefly referred to as a transformation group.
这样一个变换的群,称为变换群。
wilson's renormalization group transformation
威尔逊重正化变换群
transformation group theory in ordinary differentialequation
常微分方程变换群理论
Some Properties of N-Dimensional M(?)bius Groups;
N-维M(?)bius变换群的一些性质
Common Transformation Groups and Soluble Types of Ordinary Differential Eguations;
常见变换群与常微分方程的可解类型
Properties and Discreteness of M(?)bius Groups
M(?)bius变换群的离散性及其一些性质
Nielsen transformations and its inverse transformations of Schottky groups
Schottky群的Nielsen变换与逆变换
Triality Transformation and Lie Group Spin_7;
Triality变换和李群Spin_7
The maximal regular subsemigroups of singular order-preserving transformation semigroups
奇异保序变换半群的极大正则子半群
Generalized Wavelets and Inversion of the Radon Transform on the Product Laguerre Hypergroup;
乘积Laguerre超群上的广义小波变换及Radon逆变换
Maximal Subsemigroups of D-classes of Finite Full Transformation Semigroup T_n;
有限全变换半群T_n的D-类的极大子半群
The Complete Classification of the Maximal Subsemigroups of Finite Order-preserving Transformation Semigroup O_n;
有限保序变换半群O_n的极大子半群的完全分类
The Subsemigroups of Finite Singular Orientation-Preserving Transformation Semigroups;
有限奇异方向保序变换半群SOP_n的子半群
On the Properties of Tow Subsemigroups of the Transformation Semigroup
关于变换半群的两类子半群的若干性质
The QRS Detection Based on Wavelet Transform;
基于小波变换的心电信号QRS波群检测
The Rank of Equivalence-preserving Transformation Semigroup T_E(X);
保等价关系变换半群T_E(X)的秩
Studies on Order-increasing(Decreasing) Transformation Semigroups;
关于增(减)序变换半群的若干研究
The Relationship of the Three Type Classical Schottky Groups in Nielsen Inverse Transformations;
三类Schottky群在Nielsen逆变换下的关系
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号