For any odd prime number p,the so-called arithmetic p-groups are introduced in this paper.
对任意奇素数p,引入了一类所谓的算术p-群,并确定了其自同构群和外自同构群,所得结果推广具有一个循环极大子群的p-群的相应结论。
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space,the nonwandering property of T(t)=e~(tA) is investigated with the constructive method.
通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=etA在适当的条件下是非游荡的;另外,通过对C-半群T(t)概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式。
The existence and uniqueness of nonnegative solution to the system are proved by using the theory of bounded linear operator semigroup.
讨论了一类带有垂直传染的年龄结构 SIR流行病模型 ,利用有界线性算子半群理论证明了其非负解的存在性和惟一
In this paper the existince ,uniquebess and asymptotic property of solution for nonlinear evolution equation is studied by means of operator semigroup.
用算子半群方法研究了一类非线性发展方程整体解的存在惟一性和渐近
In this paper,we study the approximation of transition functions in continuous-time Markov chains by means of semigroups of linear operators.
运用算子半群方法,讨论了q-矩阵的截断矩阵对应Q-函数的收敛问题;引进q-矩阵的Yosida逼近矩阵,证明了任意Q-过程可以由一列有界Q-过程逼近。
In present paper,we study the asymptotic behavior of a parallel repairable system with two non- identical units,we prove by strongly continuous semigroups of operators theory that there exists a unique non- negative solution of the system,the stability of the solution of this system is ob- tained by studying spectral properties of the operator corresponding to this system.
用强连续算子半群理论证明了两不同部件并联可修系统解的存在唯一性和非负性 ,并通过研究相应算子的谱特征得到了该系统的稳定性 。
In this paper, firstly we study of the existence and uniqueness a dynamie state non-negative solution the complex repairable system by semigroups of operators theory, further we prove that 0 is the simple eigenvalue of the system.
本文用算子半群理论给出了一类复杂可修退化系统动态非负解的存在惟一性证明,并进一步证明了0是系统主算子的简单本征值。
In this paper, we shall prove the existence and uniqueness of a non\|negative time\|dependent solution of the robot and its associated safety mechanism by strongly continuous semigroups of operators theory.
本文用强连续算子半群理论证明了机器人与其连带的安全装置构成的系统存在唯一的非负动态依赖解 ,并表明在一定条件下 ,系统存在稳态正解 ,且系统的动态解在通常意义下 (空间范数意义下 )渐近收敛于稳态
Some Properties and Application of Operator Semigroups and Families of Related Operators;
算子半群及相关算子族的性质和应用
Convolution Operator Semi-Groups on L~1(D_2);
L~1(D_2)上的卷积算子半群
Existence of Generation Element of the Nonliear Semigroups of the Lipschitz-α Opearator;
非线性Lipschitz-α算子半群生成元的存在性
On Existence of Generation Element of Nonlinear Semigroups
一些非线性算子半群的生成元存在性
A Theorem on C0 Semigroups Generated by Upper-triangular-type Infinite Dimensional Hamiltonian Operators
上三角无穷维Hamilton算子半群生成定理
An Adjoint Integrated Semigroup and Its Properties
伴随积分算子半群及其性质(英文)
The Dual Theory of the Generalized Birth-death Process and Its Corresponding Semigroups;
广义生灭过程的对偶理论及相应的算子半群
The Birth-death Process with Uniform Catastrophes and Its Corresponding Generators of Integrated Semigruop;
一致突变人口过程及其相应的积分算子半群
Approximation of Semigroups of Linear Operators and Applications to Continuous-Time Markov Chains;
算子半群的逼近及其在参数连续Markov链中的应用
Integrated Semigroups of Linear Operators and Their Applications to Continuous-Time Markov Chains;
积分算子半群及其在时间连续Markov链中的应用
Research on Semigroups of Operators and Applications to the Model of Temperature Field of Artillery Barrel Wall
算子半群及在火炮管壁温差模型中的应用研究
Application of Strongly Continuous Semigroup of Linear Operators in the Equations of Parabolic Type
强连续线性算子半群在抛物型方程中的应用
Perturbation of Regulatrized Operator Semigroups and Their Applications to M/M/1 Queueing Model;
正则算子半群的扰动及其在M/M/1排队模型中的应用
(?)-Condensing Operators on Semilattices, Join-Complete Lattices and Some Inverse Semigroups
半格,并完全格和某些逆半群上的(?)-凝聚算子
The Problem of Infinite Dimensional Hamiltonian Operators Generate C_0 Semigroups
无穷维Hamilton算子生成C_0半群问题
Transportation Cost Inequalities and Uniqueness of Semigroups Generated by Diffusion Operators;
传输不等式及扩散算子生成半群的唯一性
Research on Semi-Fregile Watermark Using PSO;
基于粒子群算法的半脆弱水印技术研究
Two Note on Generates Opertaor of the Exponentially Bounded C-Semigroup;
指数有界C-半群的生成算子的两个结果
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号