Oscillation of certain a nonlinear delay hyperbolic partial differential equation;
一类非线性时滞双曲型偏微分方程的振动性
This paper studies oscillation of the solutions of hyperbolic partial differential equation with continuous delay arguments and damped terms.
研究了一类具有连续分布滞量含阻尼项的非线性双曲型偏微分方程~2u(x,t)/t~2+p(t)u(x,t)/t+A(x,t)u(x,t)+sum from i=1 to m_1( )∫_a~bB_i(x,t,τ)f_i(u(x,r_1(t,τ)))dm(τ)=C(t)Δu(x,t)+sum from j=1 to m_2( )∫_a~bD_j(t,τ)Δu(x,r2(t,τ))dm(τ),获得了该方程在两类边值条件下解振动的充分条件。
In this paper,the authors study oscillation of the solutions for a class delay hyperbolic partial differential equation with impulsive by differential inequality.
运用微分不等式的方法研究了一类具有脉冲时滞变量的双曲型偏微分方程解的振动性,获得了该方程在Robin边值条件和Dirichlet边值条件下解振动的充分条件。
Initial value problems and mixed initial-boundary value problems in hyperbolic partial differential equations with a small parameter are.
本文考虑了带小参数的双曲型偏微分方程的初值问题和初边值混合问题,建立了它们的边界层格式解法,从而避免了寻找拟合因子和加密网格时所遇到的困难。
By using the theory of Pan - complex function, the statements for n + m superhyperbolic partial differential equations are obtained, and then a kind of solution that wont be got by using classic method is achieved.
利用泛复变函数的理论给出了n+m超双曲型偏微分方程的一种论述,并在这种论述下,得到了用经典方法无法得到的一类解。
Oscillation of the solutions of a class delay systems of hyperbolic partial differential equation;
一类时滞双曲型偏微分方程组解的振动性
Research on Numerical Methods for Nonlinear Hyperbolic Partial Differential Equations;
关于非线性双曲型偏微分方程数值解的研究
The underlying method is based on the simple wave solutions of a system of hyperbolic partial differential equations.
基本的方法是以双曲型偏微分方程组的简单波解为根据的。
A Difference Scheme Solving First Order Linear Hyperbolic Partial Differential Equations
求解一阶线性双曲型偏微分方程组的一个差分格式
Oscillation of the Solutions of Neutral Hyperbolic Partial Differential Equations with Nonlinear Diffusion Coefficient and Damped Terms
具非线性扩散系数和阻尼项的双曲型偏微分方程系统解的振动性
canonical hyperbolic differential equatio
典型双曲型微分方程
Oscillation Criteria for Nonlinear Delay Hyperbolic Partial Functional Differential Equations
非线性时滞双曲型偏泛函微分方程的振动准则
Some Questions of Partial Differential Equation Method in Surface Modeling;
偏微分方程曲面造型方法的若干问题
Oscillation of the Solutions of Neutral Hyperbolic Damped Partial Differential Equations with Nonliear Diffusion Coefficient
具非线性扩散系数的中立双曲型阻尼偏微分方程组解的振动性
Hyperbolic Equations in Image Processing
双曲型微分方程在图像处理中的应用
H-Oscillation of Solutions of Hyperbolic Partial Functional in Differential Equations with Deviating Arguments;
一类具有偏差变元的双曲偏泛函微分方程的H-振动性
Oscillation of Boundary Value Problem for a Neutral Hyperbolic Functional Differential Equation;
中立型双曲型泛函微分方程边值问题的振动性
A New H~1-Galerkin Mixed Finite Element Method for the Hyperbolic Type Integro-differential Equation
双曲型积分微分方程一个新H~1-Galerkin混合元格式
hyperbolic variational inequation
双曲型变分不等方程
Necessary and Sufficient Conditions for Oscillation of Solutions of Delay Hyperbolic Differential Equation;
时滞双曲型微分方程解的振动充要条件
Oscillation for Solutions of Certain Neutral Delay Hyperbolic Differential Equations;
一类中立型时滞双曲微分方程解的振动性
Oscillation Behavior of Solution for Delay Impulsive Hyperbolic Functional Differential Equations;
时滞脉冲双曲型泛函微分方程解的振动性
Forced Oscillation for Certain Delay Hyperbolic Differential Equations;
一类时滞双曲型微分方程解的强迫振动性
Oscillation for a Class of Systems of Hyperbolic Differential Equations with Delays;
一类时滞双曲型微分方程系统的振动性
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号