A research into the semi-norms on a finite-dimensional vector space;
关于半范数在有限维向量空间的几个重要结论
finitely generatable vector space
有限可生成向量空间
General Basis of a Finitely Generated Subspace of the Fuzzy Vector Space;
模糊向量空间的有限生成子空间的一般基
Found Method of the Standard Vector Group in a Finitely Generated Fuzzy Vector Subspace;
有限生成模糊向量子空间中标准向量组的求法
Ontes on a Finitely Generated Fuzzy Vector (Matrix) Space;
关于有限生成模糊向量(矩阵)空间基底的注
A found method of the standard vector group in a finite generating fuzzy vector subspace is given in this paper.
给出求有限生成模糊向量子空间中标准向量组的方法.
A Construction of Cartesian Authentication Codes from Vector Space over Finite Fields;
有限域上向量空间中一类Cartesian认证码的构作
Definition2: Given two vector spaces ,if ,then V1 is called a subspace of v2 .
易见,任何维向量组生成的向量空间都是的子空间。
The Study of Some Questions of Metric Space Induced by a Internal Finitely Additive Measure Space
由内有限可加测度空间导出度量空间若干问题的研究
Lattices Generated by Joins of Elements in Orbits of Subspaces under Finite Unitary Groups
有限酉群作用下子空间轨道按和生成的格
Lattices Generated by Joins of Elements in Orbits of Subspaces Under Finite Symplectic Group
有限辛群作用下子空间轨道按和生成的格
bounded or limited in magnitude or spatial or temporal extent.
数量、空间或者时间范围有边界、有界限。
Using Vector Space over Z/p~kZ to Construct Cartesian Authentication Codes;
利用有限局部环Z/p~kZ上的向量空间构作Cartesian认证码
A New Construction of Authentication Codes with Arbitration from Vector Spaces over Finite Fields
利用有限域上的向量空间构作新的带仲裁的认证码
Critical Problems of Non-isotropic Subspaces in Finite Orthogonal Spaces of odd Characteristic
奇特征有限正交空间中非迷向子空间的Critical问题
the part of algebra that deals with the theory of vectors and vector spaces.
有关向量与向量空间理论的代数部分。
In an infinite dimensional space there always exist two subspaces whose vector sum is different from their span.
在一无限空间中恒存在两个子空间,其矢量和与其张成空间不同。
Marconi Space and Defence Systems Limited
马可尼空间和国防系统有限公司
For finite-dimensional spaces determinants can be brought into play.
在有限维空间中可以运用行列式。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号