the form of common solution of Jacobi equation is inquired into with characterristic vector and by linear transformation.
本文从特征向量入手,运用线性变换求解雅可比方程通解。
Hamilton-Jacobi equation for one-dimensional continous system;
一维连续系统的哈密顿-雅可比方程
A Hamilton_Jacobi_Bellman equation with the Neumann boundary condition associated with this semigroup was obtained.
研究一类半空间上带泊松跳的反射扩散过程的随机最优控制问题· 得到关于这一控制问题的非线性Nisio半群 ,和联系这一半群的带Neumann边界条件的哈密顿·雅可比·贝尔曼方程· 讨论这一类方程的粘性解的存在唯一性等问题· 证明该控制问题中的价值函数是这一方程的一个粘性解
Hamilton-Jacobi equation
哈密顿-雅可比方程
Weak Solutions of the Time Periodic Hamilton-Jacobi Equation
时间周期的哈密顿—雅克比方程的弱解
A Comprison Theorem for Time-Periodic Hamilton-Jacobi Equations
时间周期哈密顿-雅克比方程的比较定理
The robot kinematics is analyzed, the kinematics equation and the Jacobian matrix are built.
对测量机器人进行了运动学分析,建立了测量机器人的运动学方程及其雅可比矩阵。
Viscosity Solutions of Time-Periodic Hamilton-Jacobi Equations
时间周期的哈密顿—雅克比方程的粘性解
Study of new analytic solution of robotic relative Jacobian matrix
机器人相对雅可比矩阵解析求解方法研究
A New Method of Image Rectification Using Jacobian Determinant
使用雅可比行列式的立体像对校正方法
The estimation of image Jacobian matrix with time-delay compensation for uncalibrated visual servoing
带有时延补偿的图像雅可比矩阵估计方法
On the Classical Limit of the Quantum Mechanics Based on the Hamilton-Jacobi Equation
从哈密顿-雅可毕方程看量子力学的经典极限
jacobian method of eigenvalue problem
特盏问题的雅可比法
Hamilton-Jacobi theory
哈密顿-雅可比理论
And the dress was incomparable, so rich and handsome looking and yet so dignified!
而且衣裳也是无比出色的。 显得那么富丽、大方,可又十高雅!
Jacobian matrix and force-mapping matrix are calculated from the inverse-kinematics of the parallel-mechanism.
这种方法首先由机构的逆解计算其力映射矩阵、雅可比矩阵。
Applicability of Hamilton-Jacobi Method to Nonlinear Nonholonomic Systems
哈密顿-雅可比方法对非线性非完整系统的适用性
There is no animal which is more lovely than yeti in the world.
世界上比雅提可爱的动物是不存在的。
Real- Time Target Tracking System Based on Inversion of Jacobian
基于雅可比的实时目标跟踪系统研究
Historical Analysis on the Theory of the Elliptic Function;
雅可比建立椭圆函数理论的历史分析
Jacobian Analysis of Symmetrical 4-DOF 3R1T Parallel Mechanisms
对称4自由度3R1T并联机构雅可比分析
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号