Analysis technology of degrees of freedom of workpiece based on homogenous linear equations;
基于齐次线性方程组的工件自由度分析技术
The judgment theorems for locating correctness were concluded by skillfully combining the solutions of homogenous linear equations with locating schemes.
建立了描述加工尺寸与应限制自由度之间关系的自由度约束原理;巧妙地将齐次线性方程组解的性质和工件的各种定位方案联系起来,提出了定位合理性的判定定理;最后提出了不合理定位方案产生原因的判定依据,以指导工艺人员能够合理地设计夹具。
A simple formulated solution of homogeneous linear equations;
齐次线性方程组的一种简捷的公式化解法
It shows the proof of four points on a circle by the knowledge of determinant;the methods of resolving applied problems by theories about the solution of homogeneous linear equations;and the proof of inequality by positive definite and positive semi-definite matrix.
讨论利用行列式知识证明四点共圆、利用齐次线性方程组解的理论解有关应用题、利用正定与半正定矩阵知识证明不等式等高等代数方法在中学数学中的应用。
The result of the prestress design is actually the solution space of a homogeneous linear equation set.
通过分析发现 ,预应力设计的结果实际上就是一个齐次线性方程组的解空间。
The article discusses rank of a matrix by the solution theorem of system of homogeneous linear equations,and proves several famous inequalities and two propositions on rank of a matrix.
利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。
This article given another kind of proof using algebra method by system of homogeneous linear equations to the geometry question.
本文对这一几何问题利用齐次线性方程组给予了代数方法的又一种证明。
This paper discusses the further characteristic of the homogeneous system of linear equations solution space,as well as the application in the proof of matrix rank equality.
讨论齐次线性方程组解空间的进一步性质,以及在矩阵秩等式证明中的应用。
ASimple and Convenient Method for the Splution of System of Constant Coefficient Linear Homogeneus Ordinary Differential Equations;
常系数线性齐次方程组求解的一个简便方法
nonhomogeneous linear system of differential equations
非齐次线性微分方程组
Inversing the Linear Homogeneous Differential Equation System by Drazin;
用Drazin逆解线性齐次微分方程组
A Remark on the Solution Set of the Non-Homogenous Linear Equation;
非齐次线性方程(组)解集的一个注记
nonhomogeneous linear differential equation
非齐次线性微分方程
inhomogeneous linear ordinary differential equation
非齐次线性常微分方程
inhomogeneous linear difference equation
非齐次线性差分方程
The C Language Programming of Solving the Inhomogeneous Linear Equation System;
解非齐次线性方程组的C语言程序设计
Java language programming of solving the general inhomogeneous system;
解非齐次线性方程组的Java Application图形界面程序设计
Calculation of Basic Solution Matrix of Linear Homogeneous System with Constant Coefficients
常系数齐次线性微分方程组基解矩阵的求解
The Application of Homogeneous Linear Equations Solution Space Theory into Problem Solving;
齐次线性方程组解空间理论在解题上的应用
Prerequisites for the All-Nonzero Solutions to Inhomogeneous Linear Equations;
非齐次线性方程组存在全非零解的充要条件
Primary Solution to Common Modulus Linearity Non-homogeneous Differential Coefficient Equation Groups;
常系数线性非齐次微分方程组的初等解法
Another Solution to Ordinary coefficient fqual Indexes Linear Equation group (dx/dt)=AX;
常系数齐次线性方程组(dx/dt)=AX的另一种解法
The Explanation of the Specific Solution for the System of Linear nonhomogeneous Equation with Constant Coeficient;
常系数线性非齐次方程组特解的一个注记
Basic solutions and general solution of non-homogeneous linear differential equation
非齐次线性微分方程的基本解组与通解
Differential Operator Method in Solving the Group of Constant-coefficient Non-homogeneous Liner Differential Equations
常系数非齐次线性微分方程组的微分算子解法
A Simple Approach to General Solution for Nonhomogeneous Linear Equations
非齐次线性方程组通解的一种简便求法
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号