This paper mainly discusses the order of infinitesimal,gets some conclusions of the comparison of infinitesimal order,and applies these conclusions to the calculation of limit and the sorting of infinitesimal.
文章对无穷小的阶进行了一些探讨,得到了几个关于无穷小阶的比较的结论,并应用于极限的计算与无穷小排序中去。
Some notes for functional derivative and infinitesimal of higher order;
关于函数可导性与高阶无穷小的几点注记
Order of Infinitesimal and Its Application to Criterion of Convergence and Divergence;
无穷小的阶数及其在敛散性判定中的应用
Relationship between Comparison of Order Infinitesimals and Continuousness and Differentiability of Functions
无穷小阶的比较与函数的连续、可导间的关系
Theorem 1 and are equivalent infinitesimals if and only if .
定理1与是等阶无穷小的充分必要条件为.
Theorem 2 The product of a bounded function and an infinitesimal is an infinitesimal.
推论1常数与无穷小的乘积是无穷小。
Corollary 1 The product of a constant and an infinitesimal is an infinitesimal.
推论2有限个无穷小的乘积是无穷小。
Theorem 1 The sum of finite number of infinitesimal is an infinitesimal.
定理1有限个无穷小的和也是无穷小。
Notes On Infinity And Infintesimal;
关于无穷小与无穷大关系的一点注记
Some Sufficient Conditions about the Product of Countable Infinitesimal for Infinitesimal;
可列个无穷小乘积仍为无穷小的若干充分条件
Infinitely periodic solutions for a class second-order Hamiltonian systems
一类二阶Hamiltonian系统的无穷多周期解
The Thinking about the Product of Infinite Infinitesimals;
关于无穷多个无穷小的乘积的一些思考
Positive unbounded solutions of infinite boundary value problem for second-order singular differential equation
二阶奇异微分方程无穷边值问题的正无界解
infinitesimal area
无穷小邻域[面积]
Capable of having values approaching zero as a limit.
近零的,极小的无穷小地接近于零的
Being neither infinite nor infinitesimal.
非极限的,非无限小的既非无穷大也非无限小
Infinitesimal Quantum gl_n and Associated Little q-Schur Algebras;
无穷小量子gl_n和相关的小q-Schur代数
Existence of Solutions of Second-order Ordinary Differential Equation Infinite-Point Boundary Value Problems;
二阶常微分方程无穷多点边值问题的可解性
Multiple Positive Solutions to a Kind of Second-Order Four-Point Boundary Value Problem;
一类二阶四点边值问题无穷多个正解的存在性
Periodic Solutions for Second Order Neutral Functional Differential Equation with Infinite Delay
具无穷时滞二阶中立型微分方程的周期解
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号