We establish the estimates of positive solutions to a strongly coupled ecological systems in L∞(0,T;H1(Ω)) by energy methods and using Sobolev imbedding theorem and interpolation.
运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L(∞0,T;H(1Ω))估计。
The commonly Sobolev imbedding theorem is developed to domain of special regularity.
将常用的Sobolev嵌入定理推广到具有特殊正则性的区域上去,并证明了强局部Lipschitz性质和一致Cm-正则性区域下的嵌入定理。
In a class of Besov-type normed linear spaces of multivariate periodic functions with a given mixed modulous of smoothness some imbedding theorem and trace theorems are established.
在多元周期的Lp(1<p<∞)空间内,对一类具有一定混合光滑模的、被赋以Besov型范数的线性子空间,利用Nikolskii-Lizorkin型的函数表现定理证明了嵌入定理、迹定理及其逆定理(延拓定理)。
Orbifold embedding theorem;
Orbifold嵌入定理
Ideals and embedding theorem of co-residuated lattices;
余剩余格的理想和嵌入定理
A proof of the embedding theorems in the spaces of W_0~(1,N)(Ω) and W~(1,p)(R~N)
关于空间W_0~(1,N)(Ω)与W~(1,p)(R~N)上嵌入定理的一种证明
In this paper, we first introduce a new kind of A~(λ_3)_r (λ_1, λ_2,Ω) two-weight, then we obtain some two-weight integral inequalities which are generalizations of the imbedding theorems, Poincare inequality, Caccioppoli-type estimate and weak reverse Holder inequality for differential forms when α= 1.
在本文中,我们首先引入了一种新的A_τ~(λ_3)(λ_1,λ_2,Ω)双权,然后得到了当α=1时,微分形式的局部双权的嵌入定理,Poincare不等式,Caccioppoli型估计和弱逆H(?)lder不等式。
This paper considers the imbedding theorems of Sobolev space in one dimensional.
考虑一维区域上的Sobolev空间的嵌入问题,应用牛顿-莱布尼茨公式、柯西不等式、H觟lder不等式给出了一系列嵌入定理的直接证明。
An existence theorem of weak solution to a class of biharmonic equation was proved by the sub-super-solution method,the imbedding theorem and the Leray-schauder fixed point theorem.
利用上下解方法、嵌入定理和Leray-Schauder不动点定理证明了一类双调和方程弱解的存在性定理。
Embedding Theorems and the Discreteness of the Spectrum of a Class of Differential Opertors;
嵌入定理及一类微分算子谱的离散性
The Imbedding Theorems of Sobolev Space in One Dimensional
一维区域上的Sobolev空间的嵌入定理
(2)The embedded spacedimensions m should be advisably large, usually larger than the dimensions prescribed by the embedding theorem.
(2)嵌入相空间的维数应该适当大些。 通常应该高于嵌入定理给出的数值。
Compact Imbedding Theorems for Variable Exponent Spaces with Unbounded Domains and Their Applications;
无界区域上变指数空间的Sobolev紧嵌入定理及其应用
Compact Trace in Weighted Variable Exponent Sobolev Spaces W~(1, p(x))(Ω;v_0, v_1);
带权变指数索伯列夫空间W~(1,p(x))(Ω;v_0,v_1)的迹嵌入定理
A proof of the embedding theorems in the spaces of W_0~(1,N)(Ω) and W~(1,p)(R~N)
关于空间W_0~(1,N)(Ω)与W~(1,p)(R~N)上嵌入定理的一种证明
GPS based on embedded microprocessor
基于嵌入式微处理器的GPS定位系统
fix, force, or implant.
固定,强加,或嵌入。
The Design and Development of Embedded Navigation and Orientation GIS;
嵌入式导航定位地理信息系统的设计与开发
Semi-custom Physical Design Methodology Research Based on Owned Embedded System CPU
基于自主嵌入式处理器的半自定制物理设计方法研究
Embedded Data Processing and Transmission Based on Multi-Network for Mobile Spatial Locating;
面向移动空间定位的多网络嵌入式数据处理与传输
Studying Urban Movement:Clarification of Theoretical Traditions and the Insertion of the Chinese Experience;
都市运动研究:理论传统的界定和中国经验的嵌入
The Local Governance Model Based on Embedded National-Local Relationship
“嵌入式自治”:国家—地方互嵌关系下的地方治理
Handtailor the startup application of Embedded Linux
定制嵌入式Linux系统的启动程序
Design and Realization of Embedded GPS Orientation System;
嵌入式GPS定位系统的设计与实现
GPS Global Positioning System Based ARM9;
基于ARM9嵌入式GPS定位系统
The Customization Research and Application of Specific Embedded Platform BootLoader;
专用嵌入式平台BootLoader定制研究及应用
Research on Mobile Position System Based on Linux;
基于嵌入式Linux的手机定位系统的研究
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号