Since the conditional small disturbance method can not analyze the behavior,the normal form of vector field and the singularly perturbation theory were used to analyze the non-linear interaction within the power system to understand the dynamic characteristics with consideration of influences of network structure and load characteristics.
应用向量场正规形方法和奇异摄动理论,计及网络结构和负荷特性的影响,通过分析电力系统内部模式间的非线性相关作用来认识和理解系统的动态特性,深化了线性化分析中的特征分析理论,为分析强非线性下系统的稳定性及非线性动态特性提供了一条新的有效途径。
In order to determine the influence of different load buses on voltage stability,the power system power flow equations are analyzed by using the theory of normal forms of vector fields.
为研究不同负荷节点对电压稳定性所具有的不同影响程度,首先应用向量场正规形理论分析电力系统潮流方程,提出了以节点电压非线性参与因子作为依据衡量负荷节点影响电压稳定性的程度的方法。
With theory of normal forms of vector fields, a novel method to solve this problem is proposed.
该文提出一种采用向量场正规形理论,以非线性参与因子为依据,确定SVC安装位置的新方法。
The authors propose a method to analyze such system by the theory of normal forms of vector fields to the system singularly perturbed differential equation (SPDE).
随着现代电力系统的日益复杂和非线性程度的增加,电力系统在运行点附近表现出了复杂的动态行为,采用传统小扰动法难以凑效,文中将向量场正规形方法应用于电力系统奇异摄动模型,通过分析电力系统基本响应模式间的非线性相关作用来认识和理解系统的动态特性,深化了线性化分析中的特征分析理论,为分析强非线性下系统的稳定性及非线性动态特性提供了一条新的有效途径。
Influence of S-quasinormal Subgroups on the Structure of Finite Groups;
S-拟正规子群对有限群结构的影响
Localized s-quasinormality of Some Subgroups of Finite groups
有限群子群的局部s-拟正规性
We define s1(G) and s2(G) as the number of different orders of non-subnormal subgroups and the number of different orders of non-S-quasinormal subgroups,respectively.
设G是有限群,s1(G)表示G的非次正规子群的不同阶的个数,s2(G)表示G的非S-拟正规子群的不同阶的个数。
The main purpose of the present paper is to prove the following some theorems: for a finite group G,if G satisfies one of the following conditions,then G is supersolvable;(1) A maximal and cyclic subgroup of G is weakly quasi-normal in G.
利用弱拟正规子群概念,经推导得到有限群超可解的几个充分条件。
In this paper we discuss the influence on an original finite group G when its Sylow subgroups and other subgroups are weakly quasi-normal,then we obtain some sufficient conditions for supersoluability of group G.
主要讨论了群G的Sylow子群及其他子群的弱拟正规性对群的影响,从而得到原群G超可解的几个充分条件的定理:1)群G有指数为素数的可解正规子群H,若H的每个Sylow子群的极大子群在G中弱拟正规,则G超可解;2)群G有指数为素数的正规子群H,若H的Sylow子群及Sylow子群的2-极大子群皆在G内弱拟正规,则G超可解;3)设G=AB,A超可解,B是P-群,p=maxπ(G),若B与A的极大子群可交换且A弱拟正规于G,则G超可解;4)M为G的幂零极大子群,若M及其极大子群皆在G中弱拟正规,则G超可解。
The Influence of S-quasinormal Subgroups on the Structure of Finite Groups
S-拟正规子群对有限群结构的影响
The Influence of CS-quasinormality of Some Subgroups on the Structure of Finite Groups
CS-拟正规子群对有限群结构的影响
SS-Quasinormal Subgoups and Solvability of Finite Groups
SS-拟正规子群与有限群的可解性
The Influence of Some s-quasinormal Subgroups on the Structure of a Finite Group
某些s-拟正规子群对有限群结构的影响
Strong S completely regular and strong S completely normal spaces;
强S-完全正则与强S-完全正规空间
The S-T Identity on Generating Functional of Regular Vertex Angle;
关于正规顶角生成泛函的S-T恒等式
One weakening of normality is quasinormality.
正规性的一种减弱形式是拟正规性。
The Influence of Normal Index and S-normality of Subgroups on the Structure of Finite Groups;
子群的正规指数、子群的S-正规性对有限群结构的影响
Define and Properies of Quasi-normalizer and Quasi-centralizer;
拟正规化子拟中心化子的定义及相关性质
Influences of the Centralier and S-Normality of a Minimal Subgroup on the Structure of a Finite Group;
极小子群的中心化子及s正规性对群结构的影响
Method '%s' hides virtual method of base type '%s'
方法'%s'隐藏了基类型为'%s'的虚拟方法
Discussion of Monte Carlo Simulation for Computing Normalizing Constants;
关于计算正规化常数的Monte Carlo模拟方法的讨论
The Normal form and Finite determinancy of Semiquasihomogeneous Function Germs
半拟齐次函数芽的正规型和有限决定性
s-regular Dihedral Coverings of the Heawood;
Heawood的s-正则二面体覆盖
"The movie is a compendium of tortures that would horrify the regulars at an S&M club."
这部影片是折磨虐待的概要,也许能让S&M俱乐部的正规会员们心寒恐慌。
Combining C/S and B/S for the Information System of Land Use Planning;
B/S与C/S相结合的土地利用规划信息系统
(s, k)-Major Order and (s, k)-Major Efficiency of Multiobjective Programming;
(s,k)-较多序类和多目标规划的(s,k)-较多有效性
Modifications to component %s where recorded In form %s but the ancestor component was not found In form %s.
修正组件%s--在窗体%s记录中,但是祖先组件在窗体%s中没有发现.
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号