Wishart random matrix based Bayesian estimation for time-varying channel in the color noise
有色噪声下基于Wishart随机矩阵的贝叶斯时变信道估计
Based on the fundamental theory of damage mechanics of rock mass and the 3-D network simulation technique, the probability distributions of random matrix of the damage tensor on joint rock mass were studied.
基于岩体损伤力学的基本原理与三维节理网络的计算机模拟技术,探讨了节理岩体损伤张量随机矩阵概率分布规律。
An expression for the mean and covariance matrix of normal random matrix polynomial is derived by applying the method of matrix differentiation to generating function.
本文应用对母函数微分的方法得到正态随机矩阵多项式的均值与协差阵的表达式。
Finally, the fact is proved using mathematical induction and the character of stochastic matrix.
首先介绍了防御矩阵的概念、物理意义、重要性质及计算方法,分析了防御矩阵满足乘法交换律的重要意义,最后综合运用数学归纳法和随机矩阵性质证明了防御矩阵满足乘法交换律的事实,此结论无论对于多层防御系统的防御效用值研究还是矩阵理论研究都有一定的指导作用。
In this paper, some majorization inequalities of vector kronecker products are established by stochastic matrix, which are used to obtain other majorization inequalities about eigenvalue and singular of matrix kronecker products.
本文利用随机矩阵证明了向量Kronecker积的一些控制不等式,并用其得到关于矩阵Kronecker积的特征值、奇异值的一些控制不等式。
In this paper we obtained the following main results:Theorem 1 If A= (aij) is irreducible generalized stochastic matrix for which the sum ofevery equals s, and a then =s is unique eigenvalue of A, whose module equals s.
本文讨论了既约广义随机矩阵特征值的性质,得到了双随机矩阵的益为既约矩阵的充要条件,以及类矩阵的一些性质。
This novel DCT-based approach has three keys, the doubly stochastic matrix along with its coefficients are used to embed watermarking and play the role of private keys, while summation of transformation matrix of watermarking serves as public key.
在水印的嵌入与检测过程中用到了 3个密钥 ,双随机矩阵和嵌入尺度作为秘密钥保证了水印嵌入的安全性 ,DCT系数矩阵之和则作为公开钥用于水印信息的部分认证 文中算法实现了将图像作为水印信息隐藏到载体图像中 ;把水印信息的每一点都通过某种方式嵌入到载体图像的多个点上 ;使得攻击者在不知道秘密钥的情况下无法删除或改变水印信息 通过实验对嵌入和检测结果进行了比较和分析 ,表明该算法具有很好的稳健
In each iteration,the correspondence probabilities were computed by employing the eigenvectors of the Laplacian matrix and the method of doubly stochastic matrix.
该方法在每次迭代过程中,利用Laplace矩阵的特征向量和双随机矩阵计算点之间的匹配概率,然后求解已知匹配点之间的TPS(thin plate spline)变换关系,再利用获得的TPS变换参数使待匹配点集相互逼近。
For two real m×n matrices X and Y,Y is said to majorize X if SY=X for some doubly stochastic matrix S of order m.
对于2个m×n实矩阵X和Y,如果存在一个m阶双随机矩阵S,使得X=SY,则称矩阵Y控制X,记作Y X。
Primes in the Doubly Stochastic Matrices and in the Doubly Stochastic Circulants;
双随机矩阵和双随机循环矩阵的素元研究
Inequalities of the Spectral Radius of Kronecker Products for Random Matrix Functions
随机矩阵函数Kronecker积的谱半径的不等式
Image Watermarking Based on Discrete Cosine Transformation and Doubly Stochastic Matrix
基于DCT与双随机矩阵的图像数字水印方案
Research of LDPC Encoder Based on Improved Semi-random Matrix;
基于改进的半随机矩阵的LDPC编码器的研究
Application of Random Matrix Theory to Identification of Lung Cancer Gene Networks
随机矩阵理论在肺癌基因网络识别中的应用
The Methods of Double Factor Identity Authentication Base on a Random Matrix
一种基于随机矩阵的双因子身份验证方法
Mention what other generalizations of the random matrix problem are interesting but not discussed.
提及其它有趣的但没被提到的随机矩阵的一般化问题。
Identify the core random matrix question that needs to be solved to tackle the generalization.
识别随机矩阵核心问题,解决它们以处理一般性问题。
Resolubility of Trace Zero Symmetric Stochastic Matrices for the Inverse Eigenvalue Problem;
一类有零迹的对称随机矩阵特征值反问题的可解性
Application of Random Matrix Theory-based Hierarchical Clustering Method on Gene Co-expression Networks
基于随机矩阵理论的层次聚类方法在基因网络研究中的应用
Diversion Probability Matrix on Stochastic Process of Neutron Transport
中子输运随机过程中的转移概率矩阵
Some Common Properties Among Invertible Matrix,Adjoint Matrix and Inverse Matrix
可逆矩阵及其伴随矩阵、逆矩阵的一些共同特性
Another matrix associated with G is the adjacency matrix.
伴随于G的另一个矩阵是邻接矩阵。
Linear operators preserving weak adjoint matrix between matrix spaces
矩阵空间上保弱伴随矩阵的线性映射
Application of Sparse Matrix in Random Vibration Experiment Data;
稀疏矩阵在随机振动实验数据处理中的应用
On the Solution of Discrete Type Random Variable Probability with Matrix;
用矩阵求解离散型随机变量的概率问题
Orthonormal Random Beamforming with Multiple Beam Matrices
多波束矩阵下的正交随机波束成型方法
Numerical calculation of Mueller matrices of randomly distributed soot cluster agglomerates
随机分布烟尘簇团粒子缪勒矩阵的数值计算
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号