In this paper, by using Ahlfors s covering surface method, the more general quasimeromorphic mappings are studied, the Julia directions, Borel directions , the largest type Borel directions of quasimeromorphic mappings and the iterations of quasipolynomial mappings are discussed.
然后,定义了平面上的拟多项式,描述了拟多项式在迭代过程中的一些动力性质,得到了一些与多项式动力系统相类似结果。
Trend removal in the analysis of electrochemical noise by polynomial fitting;
多项式拟合法消除电化学噪声的直流漂移
Skull recognition with polynomial fitting contour;
基于多项式拟合的颅骨特征识别
Sliding polynomial fitting method and preferences in prediction of ship motion;
可用于舰船运动预测的多项式拟合方法及参数选择
Realization of Polynomial Fit Based on Labwindows/CVI;
基于Labwindows的多项式拟合设计的实现
This paper introduces the use of polynomial fit in compensation for frequency response of a receiver,a good result is got,and the polynomial fit is a very useful tool.
通过介绍作者在工作中使用多项式拟合进行接收机频响补偿并取得的良好效果,说明多项式拟合是一种非常有用的工具。
After analyzing the relation between visual sensitivity characteristic and luminance variation, a new method, namely polynomial fit to gray scale correction, is proposed.
针对彩色等离子体显示器 (PDP)采用传统灰度校正方法存在严重灰度损失和灰度畸变的问题 ,在分析视觉灵敏度特性和亮度变化关系的基础上 ,提出了用多项式拟合进行灰度校正的新方法 。
In this paper, the spectrum position error caused by multinomial fitting is analyzed and the correspond computer stimulation shows a improved precision in spectrum line detection.
对采用多项式拟合高斯光谱峰值定位误差进行了理论分析 ,提出了对光谱采样信号利用最小二乘法五次多项式拟合 ,并计算拟合函数前三次项一阶导数零交叉点的峰值定位。
To curtail the extra effect,and uses the measured sufficiently,slide multinomial fitting model is put forward.
多项式拟合是预测建筑物垂直沉降时应用最广泛的模型之一,但模型受外界影响较大。
Using the contrast matrix model,the multinomial fitting,the three dimensional look-up-table and the neural network method separately,the color space non-linear correspondence relationship was established,which demonstrated that CRT monitor equipment color space RGB has nothing to do with the equipment,and the color characterization of the equipment was completed.
分别采用阶调矩阵模型、多项式拟合、三维查找表和神经网络方法,建立CRT显示器设备颜色空间RGB与设备无关色空间的非线性对应关系,完成设备颜色显示的特征化。
A Psuedo-Polynomially Solvable Case of the Loader Problem in Modern Logistics Technology;
现代物流技术中装卸工问题的拟多项式时间可解情况
Lagrangian polynomial fit
拉格朗日多项式拟合
Bifurcation of Limit Cycles for a Class of Polynomial System with Quasi Quadratic Terms and Quasi Cubic Terms
一类含拟二次项和拟三次项的多项式系统的极限环
A mathematical model for sliding window polynomial fitting is proposed.
提出了滑动窗多项式拟合数学模型。
Realization of Polynomial Fit Based on Labwindows/CVI;
基于Labwindows的多项式拟合设计的实现
Auto-choosing Algorithm for Polynomial Fitting in GPS-Leveling
GPS水准多项式拟合自动优选算法
A METHOD OF WAVEFRONT DATA FITTING USING ZERNIKE POLYNOMIALS
运用泽尼克多项式进行物面波前数据拟合
Then wavefront reconstruction is achieved using Zernike polynomical fitting.
然后利用泽尼克多项式拟合,实现波前重建;
A Correction Method for Ring Artifacts in CT Image
基于多项式拟合的CT图像环状伪影校正
Solve Weighted Least Squares Fitting Polynomial Coefficient with Program
用程序解加权最小二乘拟合多项式的系数
Parameter estimation of polynimial phase signals based on curve fitting
基于曲线拟合的多项式相位信号参数估计
TREND REMOVAL IN THE ANALYSIS OF ELECTROCHEMICAL NOISE BY POLYNOMIAL FITTING WITH WINDOW TECHNIQUE
电化学噪声直流漂移的分段多项式拟合消除
Obtaining the spectrum of Zernike polynomials is the key to fit the surface errors by Zernike polynomials correctly.
获得泽尼克多项式的频谱信息是正确利用该多项式进行误差拟合的关键。
The optional polynomial order is selected through the test of the partial fitting square sum on the basis of the variance analysis of the fitting equation.
对拟合方程进行方差分析并在此基础上利用偏拟合平方和的检验确定拟合多项式的最佳阶数。
The intelligent fitting method has more advantages than the traditional unintelligent method,such as automatically se-lecting optimum polynomials and higher precision.
智能拟合法与传统的非智能拟合法相比具有可以自动寻求最优多项式、拟合精度高的优点。
Identical Equation of Bernoulli Multinomial and Eurler Multinomial;
有关Bernoulli多项式和Eurler多项式的恒等式
Some Identities on Genocchi Polynomials and Bernoulli Polynomials
关于Genocchi多项式与Bernoulli多项式的恒等式
Least squares polynomial smoothing was constantly used in X ray diffraction test.
X射线衍射线常用多项式拟合移动平滑方法进行处理。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号