Comparison and maximum principles for convex functions on Grushin-type planes;
Grushin型平面上凸函数的比较原理和极大值原理
Assume following nonlinear parabolic equation(Ψ(u))t=uxx+(1-u)-p with nonlinear singular boundary has a monotonous initial value,by applying Maximum Principle,quenching which only took place on the left boundary in finite time was proved and some estimations of quenching rate were also derived.
设带非线性奇异边界条件的非线性抛物方程(Ψ(u))t=uxx+(1-u)-p的初值是单调的,则由极大值原理得到了解在有限时间内仅在左边界发生淬灭,以及淬灭速率的估计。
The result that the blow-up set of the problem is a compact subset was proved by the reflective principle and the maximum principle,and the blow-up rate of the solutions was obtained.
以反演原理、辅助函数法和经典抛物型方程的极大值原理为工具,证明了问题正解的爆破集是一紧子集,并获得了解的爆破率,即爆破解关于时间t的估计。
By introducing some new methods and skills, the Hopf′s maximum principle is utilized to obtain maximum principles for functions which are defined on solutions of some nonlinear elliptic equations in divergence form.
引入一些新的方法和技巧,应用Hopf极大值原理,得到了非分离形的非线性散度形椭圆方程解的某含梯度函数满足极大值原理的条件,较满意地解决了P。
In this paper,the maximum principles for solutions of four classes of semi-linear ellipic equations are established.
文章主要建立了四类四阶半线性椭圆型方程解的极大值原理,并得到了相应边值问题的解的唯一性定理。
The paper vigorously explores the problemsby the Hopf maximum principles,builds certain suitalbe functionals for the solutions of equa-tions, and obtains the maximum principles of the functionals.
本文利用Hopf极值原理对此作了一些大胆探索,构造了该方程解的某合适泛函,获得了这类泛函的极大值原理。
With the sub-supersolution method and the maximum principle,the existence of a minimal positive solution is proved for the following system-Δu=F/u(x,u,v)+εg(x),-Δv=F/v(x,u,v)+εh(x) in Ω;u,v>0 in Ω;and u=v=0 on Ω,with ε sufficiently small,where Ω is a bounded smooth domain in RN;F∈C1(Ω×(R+)2, R+);g,h∈C1(Ω);and ε is a positive parameter.
通过上下解方法和极大值原理,证明了当ε很小时,椭圆系统-Δu=F/u(x,u,v)+εg(x)x∈Ω-Δv=F/v(x,u,v)+εh(x)x∈Ωu>0,v>0x∈Ωu=v=0x∈Ω的极小正解的存在性,其中Ω是RN上的有界光滑区域;F∈C1(Ω×(R+)2,R+);g,h∈C1(Ω);ε是正参数。
Application of waveShrink denoising with threshold generated by minimax estimation to analyses of oscillations in chest wall;
极大极小值原理产生阈值对人体胸壁微动信号的“WaveShrink”降噪
The maximum value principle of continuous time system and its explanation in economics;
连续时间系统的极大值原理及其经济学解释
Maximum principle of stochastic control and its application to investment decision;
随机控制的极大值原理及其在投资决策中的应用
The Use of Wavelet Modulus Maximum Principle in the Detection of Disturbance Signal for Transient Power Quality
小波模极大值原理在暂态电能质量扰动信号检测中的应用
Anti-maximum Comparison Principle and the Uniqueness Conditions for Second Order Neumann Boundary Value Problems;
反极大值比较原理和二阶Neumann边值问题解的唯一性
elliptic maximum principle and krein-Rutman theory with parabolic maximum principle and operator semigrou;
椭圆极值原理与krein-Rutman定理以及抛物极值原理与算子半群
maximum average uncertainty principle
极大平均不定性原理
This paper introduces the principle of wavelet transform modulus maxima applying to edge detection.
本文介绍了小波变换模极大值法进行边缘检测的原理。
THE MAXIMUM PRINCIPLES FOR A CLASS OF EQUATIONS IN DIVERGENCE FORM AND ITS APPLICATION;
一类散度型方程的极值原理及其应用
Variational Principles of Extreme Value with Mixed Variables in Elasticity;
弹性力学中混合变量的极值变分原理
large sample theory of maximum likelihood estimation
极大似然估计值的大样本理论
A maximum or minimum value of a function.
极大值,极小值函数的最大值或最小值
Saddle Theorem and Ky Fan Minimax Theorem in the P-space;
P型空间中的鞍点定理与极大极小原理
It is important and realistic to respect basic value of ethics, basic principles and basic norms.
因此,尊重伦理的基本价值、基本原则和基本规范具有极大的重要性和现实性。
Maximal and Minimal Value Principle of Differentiable Functions on Noncompact Complete Riemannian Manifold
非紧完备黎曼流形上可微函数的极值原理
Price Risk in Crude Oil Markets: A VaR Approach of EVT;
基于极值理论的原油市场价格风险VaR的研究
Maximum Pinciples of Alexandrov Type for A class of Fourth-order Elliptic Differential Equations;
一类四阶椭圆型微分方程的Alexandrov型极值原理
Imbalance Thrust Force Method for Slope Stability Analysis Based on Extremum Principle
基于极值原理的边坡稳定分析不平衡推力法
A Maximum Principle for a Class of Stochastic Control Problems with Partial Information
一类部分信息的随机控制问题的极值原理(英文)
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号