summability theory of divergent series
发散级数的可和性理论
SOME PROOF ABOUT THE NON-CONVERGENCE HARMONIC SERIES;
关于调和级数发散性的几种证明方法
Abelian Theorem and Tanberian Theorem of Theory of Divergent Series
发散级数论中的阿贝尔型定理与陶伯尔型定理
A Brief Proof for Convergence and Divergence of Harmonic progression and P progression
调和级数与P级数敛散性的简单证法
Strategies of Thinking Reflected in Proving out "Harmonic Series Divergence;
“调和级数发散性”证明中体现出的思维策略
In particular, by applying Abel summation method to obtain broad sense sum of divergence series,the calulation of summation was made from convergence series to divergence series.
用阿贝尔求和法求出发散级数的广义和,跨出了求和由收敛级数到发散级数的一步.
On Several Simply Methods Proof of The Divergency of sum from n=1 to ∞(1/n)
关于调和级数sum from n=1 to ∞(1/n)的发散性的几种简单证明
Convergence and divergence of infinite series depend upon this concept.
无穷级数的收敛性与发散性与此概念有关。
Conclusions on the series’convergence property with the changing of the sequence of item;
与级数项重组后敛散性有关的几个结论
Integration and Differential Theoryand Series Theory in P-adic Fields;
P-adic域上的微积分理论和级数理论
A Proof of the Guess about the Convergence or Divergence of a Series and the Relevant Theorems;
一个级数敛散性猜想的证明及相关定理
Harmonic Progression Is Still Divergence--Ussing with Zhang Hui;
调和级数仍是一个发散级数——与张慧同志商榷
On Necessity and Feasibility of knowledge Management of Digital Library;
论数字图书馆知识管理的必要性和可行性
(N,{p_k})Summability of Series and Application;
级数的(N,{P_k})可和性及其应用
In conditions that the laser gains can be obtained, the relations between the maximal allowable divergence angle of incident electron beam and other physical parameters are discussed.
在获得激光增益的条件下,讨论了入射电子束的最大许可发散角与其它物理参数之间的关系。
The Formulation and Development of the Theory of Primary Stage of Socialism;
社会主义初级阶段理论的形成和发展
Two Methods of Distinguishing Convergence and Divergence of Positive Terms Series;
关于正项级数敛散性的两种判别方法
The Convergence-Divergence and Estimation Formula of Generalized p-Series;
广义P-级数的敛散性及其估值公式
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号