In this paper the numerical solution of the minimal surface equation is investigated.
讨论极小曲面方程的求解 。
Remark on isoparametric minimal hypersurfaces of S~(n+1);
关于S~(n+1)中极小等参超曲面的注记
This paper,using Laplace operator,Green integral and manifold toplogy,by pinching method and technique,studies conharmonicly flat totally real minimal submanifolds M in CP4.
运用拉氏算子、格林积分和流形拓扑,根据Pinching方法和技巧研究CP4中调和平坦的全实极小子流形M,得到M体积的下确界以及取得下确界的充要条件。
In this paper,We study quasi-conformably flat totally real minimal submanifolds M in CP4.
研究CP4中拟共形平坦的全实极小子流形M,得到M体积的下确界以及取得下确界的充要条件,还有其特例——共圆平坦情形的全部对应结果。
Hlder Continuity and Minimum for Free Discontinuity Problems;
Hlder连续性与自由不连续问题的极小
There are many near optimal methods for solving m×n permutation schedule problems and in general that is to get minimum maximum flow time.
同顺序m×n排序问题通常是求极小最大流程时间,而且近似最优解解法比较多。
Local Boundedness of Minimizers of Functionals Involving Anisotropic Growth Conditions;
各向异性泛函极小的局部有界性
It is proved that the unconstrained minimizers for the p(x)-Laplacian integral functionals satisfying some natural conditions must possess radial symmetry.
证明了在自然条件下p(x)-Laplace积分泛函的无约束极小必具径向对称性,推广了Lopes在p=2时的一个相应的结
It is proved that the unconstrained minimizers and the constrained minimizers for the p-Laplacian integral functionals satisfying some natural conditions must possess radial symmetry.
证明了在自然条件下 p- Laplace积分泛函的无约束极小和约束极小必具径向对称性 ,推广了 Lopes在 p =2时的相应结果 。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号