Through norm estimation properties of solution on dissipative Camassa-Holm equation are studied,It is found that the dissipative Camassa-Holm equation possesses global attractor under condition u_0∈(H~1_0(R)) and the equation also possesses peaked solution.
利用Galerkin过程将耗散CH方程表示为常微分方程形式,再利用先验估计获得了解在全空间Hs0(R)上关于时间的整体的存在性,通过范数估计对解的性质进行了研究,发现强耗散CH方程在初值u0∈H10(R)条件下存在整体吸引子。
The Steady State of Dissipative Boltzmann Equation
耗散Boltzmann方程的稳定态解
Attractor of Degasperis-Procesi Equation with Dissipation;
耗散Degasperis-Procesi方程的吸引子
Tjon-Wu Model of the Boltzmann Equation;
Boltzmann方程的Tjon-Wu模型
The Viscosity Analysis on the Boltzmann Equation;
Boltzmann方程的粘性分析
Attractors of Partly Dissipative Reaction-Diffusion Equations;
部分耗散反应扩散方程的吸引子研究
Riccati function solutions of nonlinear dispersive-dissipative mKdv equation
非线性色散耗散mKdv方程的Riccati函数解
Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation
非线性耗散-色散方程行波解的存在性
Lattice Boltzmann Method for Reaction-Diffusion Problems;
用格子Boltzmann方法研究反应扩散问题
Entropy Dissipating Scheme for Hyperbolic Systems of Conservation Laws in One Space Dimension;
一维守恒型方程(组)的熵耗散格式
The Cauchy Problem for Shallow Water Equation with Dissipation;
带有耗散项的浅水波方程的Cauchy问题
Global attractor for weakly damped generalized Camassa-Holm equation in the long time
耗散Camassa-Holm方程的整体吸引子
Critical condition of blow-up solution of Camassa-Holm Equation with dissipation
带耗散项Camassa-Holm方程解爆破的条件
The Blow-up of Solutions of a Class of Nonlinear Dispersive-dissipative Equation
一类非线性耗色散方程解的Blow-up
Spherical Temporal Dissipative-Structures of Tri-Molecular Reaction-Diffusion Equations
三分子反应扩散方程的球对称时间耗散结构
Periodic Wave Solutions of a Dissipation-dispersion Nonlinear Wave Equation
一类耗散—频散非线性波动方程的周期波解
Global strong solutions for a class of nonlinear wave equations with dispersive and dissipative terms
一类非线性色散耗散波动方程的整体强解
Numerical Methods Based on Boltzmann Equation in Fluid Dynamics;
以Boltzmann方程为基础的流体力学数值方法
The Lattice Boltzmann Method for Conservative Law Partial Differential Equations
守恒律偏微分方程的格子Boltzmann方法
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号