A new Jacobi identity is proved by the residue theorem.
运用留数定理证明了一类雅可比恒等式,并求得了一些Theta函数的恒等式。
A q analogous Jacobi identity is constructed by means of q parametrization of the bases of the Lie algebra g=SL(2,C).
本文通过对李代数g=SL(2,C)的基底(basis)的q参数化,构造了一种q类似的雅可比恒等式,进一步获得了对应的量子A(1)1Kac-Moody代
In this paper,the author gave some commutativity theorems on semi-prime ring with variable identity,which is a generalization related.
给出了满足某可变恒等式的半质环的交换性定理,推广了已有的结论。
Commutative Conditions of Rings with Variable Identical Equation;
可变恒等式条件下的环的交换性条件
Commutativity of Semiprime Rings with Constraints on Varying Polynomial Equality
满足某可变恒等式的半质环的交换性
q-Series Transformation Formulae and Rogers-Ramanujan Type Identities;
q-级数变换公式与Rogers-Ramanujan型恒等式
A transformation from identities of Fibonacci numbers to congruence of Lucas numbers;
从Fibonacci数的恒等变换到Lucas数的同余式
Equation 1. 1-11 is thus a statement of the conservation of particle probability.
因此等式(1.1-11)可以作为粒子几率守恒的表达式。
Some Identities Involving the Jacobi Polynomials and Fibonacci Number;
雅可比多项式及斐波那契数的一组恒等式
Some Identical Transformations and Congruence Expressions Involving Arbitrary Order Power of the Lucas Numbers;
关于Lucas数任意次幂的恒等变换与同余式
Some Identities and Congruence Involving the Power of the Fibonacci Numbers and Lucas Numbers;
关于Fibonacci数的幂与Lucas数的恒等变换与同余式
The application of random variables characterritic function in identity proving;
随机变量的特征函数在恒等式证明中的探讨
slavnov taylor identity
斯拉夫诺夫泰勒恒等式
Pollaczek-Spitzer identity
波拉泽克-斯皮策恒等式
Rogers-Ramanujan Identities and q-Operator;
Rogers-Ramanujan型恒等式与q-算子
The Study of Weyl-Heisenberg Frame Identity;
Weyl-Heisenberg框架恒等式的研究
variable temperature cryostat
可变温度低温恒温器
Identical Equation of Bernoulli Multinomial and Eurler Multinomial;
有关Bernoulli多项式和Eurler多项式的恒等式
Some Identities on Genocchi Polynomials and Bernoulli Polynomials
关于Genocchi多项式与Bernoulli多项式的恒等式
An equation that is satisfied by any number that replaces the letter for which the equation is defined.
单位(矩)阵定义式中的字母对任一数字都使恒等式成立的恒等式
Some Identities Involving Lucas Polynomials;
关于Lucas多项式的一些恒等式
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号