Given that basic vectors α,β and γ of curve Γ:r=r(s),there curvature and torsion parting for κ,τ.
已知曲线Γ:r=r(s)的基本向量为α,β,γ,曲率和挠率分别为κ,τ,研究了由γ,β和r所作出的曲线Γ-:ρ=r+aγ+b ∫ from n=S_0 to S(βds)的曲率-κ和挠率-τ的计算问题。
Some conditions for the basic vector curvature and torsion of two curves with one-one corresponding relationship are studied when,two of their tangent line,main normal and subnormal parallel or coincide in the corresponding point.
有一一对应关系的 2曲线在对应点处的切线、主法线、副法线中某 2条平行或重合时 ,研究了曲线在该点处的基本向量、曲率、挠率满足的条
When the action of Lie groups G on E n is isometric, the author also obtains the fact that a curve is a line if the projectioin of a fundamental vector field to this curve which does not belong to an orbit is a nonzero constant.
证明了En 在李群G的等距作用下 ,对于一条不位于轨道上的曲线 ,若存在一个基本向量场在它上面的投影为非零常数 ,则它为直
The author got some properties of the fundamental vector fields zero points in complete Riemanian G manifolds, and discussed the orbit types of a kinds of special Riemanian G manifolds.
得出了完备黎曼G 流形上基本向量场零点的一些性质 ;并对一类特殊的黎曼G 流形的轨道型进行了讨
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号