您好,欢迎访问优校网! 收藏本页 手机访问
今天是:

non-linear parabolic是什么意思


中文翻译非线性抛物[型]

网络释义

1)non-linear parabolic,非线性抛物[型]2)nonlinear parabolic,非线性抛物型3)nonlinear parabolic equations,非线性抛物型方程4)nonlinear parabolic boundary value problem,非线性抛物型方程5)nonlinear parabolic equation,非线性抛物型方程6)nonlinear parabolic equations,非线性抛物型方程组7)nonlinear parabolic systems,非线性抛物型方程组8)nonlinear degenerate parabolic equation,退化非线性抛物型方程9)Nonlinear parabolic system,非线性抛物型方程组10)Doubly nonlinear parabolic equation,双非线性抛物型方程

用法例句

    Dissipativity and asymptotics of the nonlinear parabolic equations;

    非线性抛物[型]方程的耗散性和渐近性

    The existence,uniqueness and comparison principle of periodic solutions of boundary problem for nonlinear parabolic equations: u(u)t=f(u x)x (x,t)∈(0,1)〗R u(0,t)=g 0(t),u(1,t)=g 1(t),t∈R is proved by constructive method.

    利用构造性方法证明了非线性抛物[型]方程边值问题a(u)t=f(ux)x,(x,t)∈(0,1)×R,u(0,t)=g0(t),u(1,t)=g1(t),t∈R的周期解的存在性,同时证明了周期解的比较原理和唯一性定

    A class of inverse problems for nonlinear parabolic equations is discussed by the variational adjoint method,which is firstly proposed in optimization control for partial differential equations.

    利用偏微分方程最优控制中的伴随方法研究一类非线性抛物[型]方程逆时反问题。

    A finite difference method with accuracies of fourth order in space and second order in time is proposed for time-periodic solutions of a nonlinear parabolic boundary value problem.

    建立了一个用于求解非线性抛物[型]方程时间周期解的有限差分方法,在空间和时间方向上该方法分别具有四阶和两阶精度。

    Wavelet Galerkin approximation of nonlinear parabolic equation;

    非线性抛物[型]方程小波Galerkin逼近

    The error estimation on large time for a class of nonlinear parabolic equation;

    一类非线性抛物[型]方程的长时间误差估计

    Global existence of solutions for a class of nonlinear parabolic equations with dirichlet boundary conditions;

    一个非线性抛物[型]方程的初边值问题解的整体存在性

    Global existence and blow up for a nonlinear parabolic equations;

    一类非线性抛物[型]方程组解的整体存在及爆破

    A study is made on the blowing up problem for the nonlinear parabolic equations u t=Δu m,v t=Δv m, m≥1,with nonlinear boundary conditions  u  n=u p·v q,  v  n=u r·v s.

    研究了带非线性边界条件 u n =up·vq, u n=ur·vs的非线性抛物[型]方程组ut =Δum,vt =Δvm(m ≥1)时的爆破问题 。

    This paper deals with the existence and nonexistence of global positive solution of nonlinear parabolic equations with nonlinear boundary conditions.

    考虑一类带非线性边界条件的非线性抛物[型]方程组的整体存在性和爆破问题。

    Based on triangular meshes, we present a finite volume element framework for a class of two dimensional nonlinear parabolic systems.

    讨论基于三角形网格的二维非线性抛物[型]方程组的有限体积元方法,其中试探函数空间为二次Lagrange元,检验函数空间为分片常数函数空间,对问题的全离散格式证明了最优的能量模误差估计。

    The initial regular oblique derivative problem for nonlinear parabolic systems of several second order complex equations with measurable coefficients in a multiply connected domain is discussed.

    论述了多连通区域上可测系数的二阶非线性抛物[型]方程组的初-正则斜微商问题。

    Lions has proved the existence and uniqueness of global solutions to the initial-boundary value problem for a class of nonlinear degenerate parabolic equation by mean of compactness principle,but the decay property is considered by few people.

    L ions用紧致性方法证明了一类退化非线性抛物[型]方程初边值问题整体解的存在唯一性,但解的衰减性很少有人考虑。

    Galerkin alternating-direction procedures are considered for the nonlinear parabolic systems q i(ξ,u)u it-∑kj=1·(a~ ij (ξ,u)u j)+∑kj=1 b~ → ij (ξ,u)·u j=f i(ξ,t,u),1≤i≤k.

    利用等参变换、在局部有限单元上近似Jacobi行列式p(x)及系数qi(ξ,u),1≤i≤k等方法,对非矩形区域上非线性抛物[型]方程组qi(ξ,u)uit-∑kj=1·(a~ij(ξ,u)uj)+∑kj=1b~→ij(ξ,u)·uj=fi(ξ,t,u),1≤i≤k,提出了一类方向交替Galerkin格式,并得到最优的L2-和H1-误差估计。