As an application,we utilize this result to study the existence problem of solutions for some kind of nonlinear integral equations.
得出了一个新的不动点定理,推广了Alt man不动点定理,并利用这一新的不动点定理研究了一类非线性积分方程解的存在性问题。
This paper deals with the problem for solving a class of nonlinear integral equations in reproducing kernel space W(Ω) .
本文在再生核空间中,利用再生核把非线性积分方程化为线性积分方程,研究了此类方程的求解问题,揭示了此类方程解的结构,存在性及多解等问题。
The authors study the prob1em for so1ving a c1ass nonlinear integral equation in the reproducing kernel space W_2~1[a, b].
在再生核空间中,利用再生核方法,把一维非线性积分方程K_1uK_2u=f转化为二维线性算子方程Ku=f。
Furthermore, we utilize our results to study the non zero solution and positive solution and properties of the solution for a class of the nonlinear integral equations, and some new results are obtained.
得到凝聚映象的几个新的不动点定理 ,并用到一类非线性积分方程的非零解、正解和解的性状的研究上得出了新的结果 。
The non-linear integral equations of circular ring shells and truncated shallow conical shells of U-shaped bellows are derived using the Green function method, and the conjunction conditions between circular ring shells and truncated shallow conical shells are applied to determine the four unknown parameters.
采用格林函数法,导出了U型波纹管圆环壳部分和截头扁锥壳部分的非线性积分方程,其中的四个未知参数由圆环壳和截头扁锥壳的连接条件确定。
By constructing suitable Liapunov functionals V(t,x(·)) and weaking the conditions on V(t,x(·)) and D~+V(t,x(·)),some sufficient conditions of stability for nonlinear Volterra integro-differential equation are obtained,which improve the results in Burton T A(1983).
))的要求,得到一些保证非线性Volterra积分微分方程解稳定的充分条件,改进Burton T A(1983)中的相应结果。
The Existence of Continuous Solutions on a Nonlinear Integral Equation;
一类非线性积分方程连续解的存在性
Existence and Uniqueness of Positive Solutions for Some Nonlinear Integral Equations
一类非线性积分方程的正解存在唯一性分析
Wavelet Galerkin Method for Nonlinear Integral Equations of the Second Kind;
解第二类非线性积分方程的小波Galerkin方法
EXISTENCE AND UNIQUENESS OF SOLUTION OF NONLINEAR INTEGRAL EQUATION IN ABSTRACT SPACE
抽象空间非线性积分方程解的存在与唯一性
nonlinear integro-differential equation
非线性积分微分方程
Solutions to Several Classes of Nonlinear Differential Equations and Integral Equations;
几类非线性微分方程和积分方程的解
Asymptotic Behavior of Solutions of Certain Second Order Integro-differential Equations;
二阶非线性积分-微分方程解的有界性
Solvability of Systems of Nonlinear Hammerstein Integral Equations;
非线性Hammerstein积分方程组的可解性
Research on Some Problems of Nonlinear Integro-Differential Equations
非线性积分微分方程若干问题的研究
The Regularizing Solution of Nonlinear Abelian IntegralEquation
非线性阿贝耳积分方程的正则化求解
Integrability Conditions of A Class of Third-order Nonlinear Differential Equation;
一类三阶非线性微分方程的可积条件
Solution of kind of second-order variable coefficient differential equation;
几类二阶非线性微分方程的可积类型
Integral Criteria of One Kind of First-order Nonlinear Differantial Equation;
一类一阶非线性微分方程的可积判据
Integral Criterion of One Kind of New Nonlinear Differential Equation;
一类新非线性常微分方程的可积判据
Solve the Nonlinear Schrodinger Equation by the Precise Integration Method
用精细积分法求解非线性薛定谔方程
Stability Analysis of One-Leg Methods for Nonlinear Integro-Differential Equations
非线性积分微分方程单支方法的稳定性分析
High Accuracy Mechanical Quadrature Method for Solving Nonlinear Boundary Integral Equations;
非线性边界积分方程的高精度机械求积法
The Stability of Nonlinear Stiff Delay Integro-differential Equations;
非线性刚性延迟积分微分方程的稳定性
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号