complete elliptic integral of the second kind
第二类完全椭圆积分
incomplete elliptic integral of the first kind
第一类不完全椭圆积分
complete elliptic integral of the first kind
第一类完全椭圆积分
In the equation E (k) is the complete elliptical integral of the second kind.
式中,E(k)为第二类完全椭圆形积分。
The Comparison Principle for Viscosity Solution of Fully Nonlinear Elliptic Integro-differential Equation;
一类带有非局部积分项的完全非线性椭圆型方程粘性解的比较原理
In the process of derivation the Biot~Savart rule is adopted to get the conclusion in stead of the conventional method,by elliptical integra-tion.
推导过程没有采用传统的完全椭圆积分,而是直接利用毕奥一萨伐尔定津得出结论。
One Prior Estimate for Solution of a Second-order Elliptic Partial Differential Equation
一类二阶椭圆型偏微分方程解的先验估计
On Some Fixed Value Theorems for Directed Areas in Elliptic Circumscribed Polygons and Their Applications
椭圆类二次曲线外切多边形中有向面积的定值定理及其应用
The Existence of the Supersolution and Subsolution of the Neumann Problems of the Fully Nonlinear Monotone Second-order Elliptic Systems;
完全非线性单调二阶椭圆方程组Neumann问题上解和下解的存在性
Research on Abelian Integrals for a Hyper-elliptic Hamiltonian System with a Nilpotent Saddle under Polynomial Perturbations
一类具有幂零鞍点的超椭圆Hamilton系统在多项式扰动下的Abel积分研究
Resembling an ellipse in shape;elliptical.
椭圆形的形状类似椭圆的,椭圆的
Fast Numerical Solution for Two Dimensional Fredholm Integral Equation of the Second Kind;
二维第二类Fredholm积分方程的快速解法
The seeond integral is easier to approximate than the first one.
第二个积分比第一个积
The Existence of Solution for Two Elliptic Partial Differential Equations
两类椭圆偏微分方程解的存在性问题
Classification between rectangular and ellipsoid/circular areas
矩形和(椭)圆区域目标的分类识别
Xanthone glycosides from Tibetan herb Halenia elliptica
藏药椭圆叶花锚中酮苷类成分的研究
Solve Fredholm Integral Equation of the Second Kind Using Interpolating Wavelet;
应用插值小波解第二类Fredholm积分方程
It is shown that the propagation of charged-particle beam can be made in complete analogy with the transmission of ellipse-Gaussian light beam in paraxial approximation.
傍轴近似下带电粒子束传输可完全类比于近轴光线椭圆高斯光束的传输。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号