The relation between the iteration of projective function and the linear recursive sequences of order 2 is given.
先给出射影函数的迭代与 2阶线性递归序列的关系 ,进而得到此递归序列与Bernoulli数的一个恒等
This paper proves that the Diophantine equation has only integer solution with the help of the Pell method taking an integer>1 as module to make inconsistency,the natures of recurrent sequences and equivalent Pell equation.
采用对方程取某个正整数M>1为模来制造矛盾的同余法和利用递归序列的性质,以及Pell方程的性质,证明不定方程x3-1=13y2仅有整数解(x,y)=(1,0)。
In this paper,the author has proved, with two method of contradictor recurrent sequences and congruence when modules of some positive integer M>1, that the Diophantine equation x~3+1=19y~2 has only integer solution(x,y)=(1,0).
利用两种初等的方法,即对方程取某个正整数M>1为模来制造矛盾的同余法和递归序列法,证明了不定方程x3 -1=19y2 仅有整数解(x,y)=(1,0),从而进一步的证明了方程x2 -19y2 =-13无整数解;方程x2 -3r2 =-3仅有整数解(1。
With the method of recurrent sequence and congruences,proved that the Diophantine equation x3+1 =37y2has only integer solution(x,y)=(-1,0),(11,±6).
利用递归序列,同余式证明了丢番图方程x 3+1=37y2,仅有整数解(x,y)=(-1,0),(11,±6)。
This essay demonstrates with examples two methods of analysing recursive program:First, analysing through the nest, second,analysing through backward inference and progressive inferene.
通过实例介绍嵌套分析法、“回推”和“递推”分析法两种分析递归程序的方法,旨在对递归程序的执行过程有较深刻的理解。
The recursive program is a very important context in lots of university computer teaching materials.
递归程序是高等院校众多计算机教材中非常重要的教学内容 ,笔者通过数年的教学实践 ,对递归程序的算法本质、适用的应用领域及其向非递归程序的转化进行了较深入的探讨 ,希望大家对递归程序有个更深刻的认
Formulas for simple and direct computations for Euler--Bernoulli polynomials of n variablesare presented,some identities containing recurrence sequences and Euler--Bernooulli polynomials of n variables have been established.
给出简捷计算n元Euler-Bernoulli多项式的公式,建立一些包含递归序列和上述多项式的恒等式。
In order to explain how the recursion program moves,there is a abstract concept “arrangement ”in the textbook,but it’s not easy to accept .
现行大学中的《数据结构》教材,在《递归》章节内容的教材教法方面,对大学生来说较难理解接受,尤其是“hanoi塔问题”递归程序的如何运行,原教材引用“层次”概念,非常抽象,不利于学生掌握。
Linear Recurring Sequence over the Matrix and Its Cryptography Properties;
矩阵上的线性递归序列及密码学特性
Trace Representation and Period of Linear Recurring Sequences over Finite Fields
有限域上线性递归序列的迹表示与周期
The Resolution of Magic Square by Means of Full Permutation and Recursion--C++ Programe Design;
用全排列和递归求解“魔方”——C++程序设计
Integration Sequences of General Second-Order Linear Recursive Polynomials;
一般二阶线性递归多项式的积分序列(英文)
Non-recursive Algorithm Which Constructs The Binary Tree With Traversal Sequence
由遍历序列构造二叉树的非递归算法实现
Assignment of an object to a target list is recursively defined as follows.
一个对象向一个目的序列的赋值递归地定义如下.
Further Research on the Predictability of Time Series Based on Recurrence Plot;
对基于递归图的时间序列可预测性的进一步研究
The Recursive Equation of Homogeneous Linear Recurrent Sequence of Number Formed by General Term Formula;
由通项公式构造齐次线性递归数列的递归方程
The paper introduces the general form of recursive model, the process of recursive program running and the recu-rsive program design.
介绍了递归模型的一般形式、归程序的执行过程及递归程序设计。
Application of Fourier, Wavelet and Recurrence Quantification Analyses to Classification Coding and Non-coding Sequences and Protein Structure Classes;
傅立叶、小波、递归定量分析在区分编码和非编码序列以及蛋白质结构类中的应用
Quicksort Algorithm Based on the Theory of Division-and-Conquer and Recursion;
基于分治与递归策略的快速排序算法
Research on Using C Language to Create a Sorted Bi-tree with Recursive Function;
用C语言递归建立二叉排序树的研究
Method for matrix solution of constant coefficient recursive sequences general term equation;
常系数递归数列通项公式的矩阵求法
A Tentative Study of Constant Coefficients Homogeneous Linear Recurrent Number Sequence;
常系数齐次线性递归数列的初步探讨
The General Formula of A Usual Type of Linear Recursive Sequence;
一般形式的线性递归数列的通项公式
On the Algorithms of the pre-order and post-order non-oneself transferring oneself traversing;
关于二叉树前序和后序的非递归遍历算法
Hanoi Tower is more classical recursion problem while designing program.
Hanoi塔是程序设计中比较经典的递归问题.
Note the pattern of recursion is the same in both cases. This pattern is very common.
注意递归的写法,这是程序设计中很常见的。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号