The system risk is analyzed based on the minimum cut sets which are solved using the Semanderes algorithm.
利用Semanderes算法求出故障树的最小割集,对客滚运输安全进行定性分析。
The minimum cut sets(fault spectrums) are obtained by qualitative analysis.
通过定性分析,找出了抽油杆事故的全部最小割集—故障谱。
Qualitative analysis and quantitative analysis are made by using of fault tree analysis,minimum cut sets and importance are calculated.
利用故障树分析法对系统进行定性分析和定量计算,求出系统的最小割集和重要度。
All of minimum cut sets of fault trees are found out and the qualitative analysis .
求取了故障树的所有最小割集,并对该电子式电流互感器的可靠性进行了定性分析。
Introduces a new simulation method based on the minimum cut sets of fault tree, analyzes the way using the method in the research of the reliability of FMS, a case is presented to prove its correctness.
介绍了基于最小割集的仿真方法的原理及其具体实现过程 ,并分析了它在柔性制造系统FMS(FlexibleMachingSystem)可靠性研究中的应用 ,最后用一个FMS的实例来验证该方法的正确性。
On finding the versatile solution of the least cut set and least path set in Fault Tree Analysis by computer;
事故树分析中最小割集、最小径集的计算机求解
In the first layer calculation, the reliability is redistributed among the least cut sets, and then the reliability is equivalently distributed among the basic events in the second laye.
笔者将可靠性分配理论与故障树分析方法相结合,提出了2个层次可靠度分配法:最小割集之间采取可靠度再分配法,对构成最小割集的各个基本事件之间采取等分配法。
Secondly,the fault tree is qualitatively analyzed by using the least cut set method and all possible failure modes of the system are got.
通过分析暂冲式水洞的系统结构,建立了系统的故障树;利用最小割集法对故障树进行定性分析,找到了系统所有可能的故障模式,得到了系统的34个一阶、34个二阶最小割集;总结出各种设备故障和人为因素所造成的故障,是造成本系统故障的两个主要因素;以控制系统故障树的定量分析为例,得到了计算系统可靠度及各底事件的重要度的方法,进而分析出一阶最小割集中的故障是整个系统的最薄弱环节;并提出了提高系统可靠性的相应措施。
Minimal cut set and minimal path set are introduced to develop causality diagram methodology.
将最小割集和最小径集的概念引入了因果图理论,并用于重大安全事故的定性和定量分析中。
This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree.
采用模拟退火方法解最大的最小割集发生概率,同时在寻优过程中找出近优的最小割集,最后确定基本事件的重要性顺序。
A method using incidence matrix of Petri net to identify the minimal cut sets(MCS) was proposed.
在应用Petri网模型构建系统故障逻辑关系图的基础上,提出了一种应用Petri网的关联矩阵求最小割集的算法。
Calculation of system reliability for mine ventilation network based on boolean manipulation and minimization algorithm in the minimal cut sets;
矿井通风网络最小割集不交和可靠度的计算
Calculation the fault tree s minimal cut sets of the minimum equipment list;
最低设备清单故障树模型最小割集的生成
Dynamic generation of safety test case based on minimal cut sets;
基于最小割集的安全性测试用例的动态生成
RELIABILITY EVALUATION OF COMPLEX DISTRIBUTION-SYSTEM BASED ON MINIMAL CUT SETS;
基于最小割集的配电系统可靠性评估
Minimum Cut of Fault Tree Based on Step Function Algorithm
基于阶跃函数的故障树最小割集算法
A Simple Algorithm for Enumerating All the Minimal Cuts of An Undirected Graph;
枚举一个无向图所有最小割集的一种简单算法
FaultTree analysis algorithm for Living PSA
适用于Living PSA快速求解最小割集的算法研究
An Effective Event Sequence-Based Algorithm to MCS
一种基于事件序列的故障树最小割集算法
The Description and Computation of Reliability Based on Minimal Path and Minimal Cutset for the Class of Complex System
基于最小路径与最小割集的复杂系统可靠性的描述与计算
An Algorithm for Minimum Vertex Cut Set of Partially Ordered Sets and the Problem of Minimum Cost of Crashed Tasks;
偏序集最小顶点割算法与最小费用赶工问题
an atom is the smallest indivisible unit of matter.
原子是最小的不可分割的物质单位。
Image Segmentation Method Based on the Measure of Fuzziness;
基于最小模糊性度量的图像分割方法
Optimum Template Selection and Level Set Atlas-based Segmentation
基于最优模板选择和水平集的图谱分割算法
The New Methods to Solve the Normal Form of Least Set and the Normal Form of Greatest Set;
求最小集范式和最大集范式的新方法
GA Image Segmentation Based on Rough Set and Wavelet
基于粗糙集和小波的遗传算法图像分割
Least squares classification algorithm based on multi-segmentation and pocket
基于多分割和口袋方法的最小二乘分类算法
A Cattle Iris Segmentation Method Based on Least Square Principle
基于最小二乘原理的牛眼虹膜分割方法
MST Image Segmentation Based on Mumford-Shah Theory
基于Mumford-Shah理论的最小生成树图像分割方法
Image Segmentation of Color Wear Debris Based on LS-SVM
基于最小二乘支持向量机的彩色磨粒图像分割
Two-dimensional Extension of Minimum Error Threshold Segmentation Method for Gray-level Images
灰度图像最小误差阈值分割法的二维推广
Laplace watershed segmentation based on minimum energy
基于能量最小的拉普拉斯流域分割算法
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号