Research of Reverse Nearest Neighbor Query in Spatial Database;
空间数据库中反最近邻查询技术的研究
Methods of nearest neighbor guery in road network with barriers
障碍物环境中的路网最近邻查询方法
The model was produced by combining the idea of nearest neighbor with radial basis function n etworks.
针对时间序列变量难以精确预测的问题 ,本文将最近邻思想与径向基函数网络相融合 ,提出了一种新的预测方法 ,并将其应用于石油产量的预测 ,取得了良好的效
Development and improvement of K-Nearest Neighbor clustering technique
K-最近邻分类技术的新发展与技术改进
To further understand the quantitative structure-activity relationship(QSAR)of fluorine-containing pesticide and improve the prediction precision of QSAR models,a novel nonlinear combinatorial forecast me-thod named Multi-KNN-SVR,multi-K-nearest neighbor based on support vector regression,was proposed.
为深入认识含氟农药生物活性与其结构之间的关系,建立了理想的QSAR模型,从化合物油水分配系数等7个分子结构描述符出发,基于支持向量回归(SVR)和MSE最小原则,经自动寻找最优核函数和非线性筛选描述符,构建了多个K-最近邻(KNN)预测子模型。
In order to improve the predication precision of quantitative structure-activity relationship(QSAR) model,a novel combinatorial k-nearest neighbor method based on support vector machine regression(SVR-CKNN) was proposed,which could screen descriptors automatically and then builds several k-nearest neighbor models for combinatorial forecast.
该法基于支持向量机回归(SVR)自动筛选化合物结构描述符,以k-最近邻建立多个子模型实施组合预测(CKNN)。
Firstly, proposes the two-levels order case representation, and constructs case similarity calculation model using nearest neighbour technique; then, according to order characteristics dedicated to steel industry, analyzes.
本文重点讲述了提取活动中的相似度计算问题,首先,提出了对订单案例的两级表达方式,并利用最近邻居(NearestNeighbour,NN)技术构建了案例相似度计算模型;然后,根据钢铁企业的订单特征,本文分析了区间值之间相似度的计算方法以及合成加权系数计算方法;最后,利用上述方法解决了给出了订单案例相似度计算公式,为案例提取过程提供了数学依据。
The reverse nearest neighbor query is a new kind query based on the nearest neighbor query, it is application extention on spatial database.
反最近邻查询是在最近邻查询基础上提出的一种新的查询类型,是空间数据库的应用拓展,在不同维数下,根据不同的索引结构,反映出空间对象的反最近邻查询差异性较大,从不同索引结构的特性出发,分析了低维环境丁基于R*-树的反最近邻查询优势,提出高维环境下一种新的基于SRdann-树索引结构的空间对象反最近查询方法,优化了不同维数下空间对象的反最近查询性能,提高了查询效率。
The reverse nearest neighbor search in dynamic environments is becoming a hot topic,and an efficient space trimming method is the bottleneck of such a search.
动态环境中的反最近邻查询已成为空间查询的研究热点,有效的数据空间削减策略是此类查询的瓶颈。
Therefore,reverse nearest neighbor queries algorithm basis on Euclidean space is not suitable to spatial network databases.
在空间网络数据库中,对象的位置和运动被约束在网络中,对象之间的距离不是传统的欧氏距离,而是由网络连通性决定的网络距离,因此,基于欧氏空间的反最近邻查询算法不适用于空间网络数据库。
Algorithm Research on Nearest Neighbor Query and Reverse Nearest Neighbor Query
最近邻查询和反最近邻查询算法研究
Nearest Neighbor Bootstrap Model for Predicting Daily Flow Process
预测日径流过程的最近邻仿真模型
Research on Skyline Queries Based on Nearest-Neighbor;
基于最近邻法的Skyline查询研究
Predicting outer membrane proteins based on kernel nearest neighbor algorithm
预测外膜蛋白的核最近邻算法(英文)
Methods of nearest neighbor guery in road network with barriers
障碍物环境中的路网最近邻查询方法
Kernel nearest neighbour algorithm for predicting protein-protein interactions
蛋白质相互作用预测的核最近邻算法
HR Indexing of Moving Point Objects and Reverse Nearest Neighbors Query
移动点对象HR索引及反向最近邻查询
Detecting community structure based on shared nearest neighbor
基于共享最近邻探测社团结构的算法
Research on k-nearest NeighBor Search Algorithm in P2P
P2P环境中k最近邻搜索算法研究
An improved nearest neighbor searching method for classification problems
最近邻搜索用于分类问题的一种改进
Reverse Nearest Neighbor Search Based on Voronoi Diagram
基于Voronoi图的反向最近邻查询
Study on KNN arithmetic based on cluster
基于簇的K最近邻(KNN)分类算法研究
Reverse nearest neighbor query based on Voronoi diagram and delaunay graph
基于Voronoi图及其对偶图的反最近邻查询
Research of Bichromatic Reverse Nearest Neighbor Search for Spatial Objects
空间对象的双色反向最近邻查询研究
Approach for pre-extracting support vectors based on k-NN
基于k-最近邻的支持向量预选取方法
Asymptotic Behavior for Nearest NeighborMedian Estimates in Nonparametric Regression;
非参数回归中最近邻中位数估计的渐近性质
A new method of continuous nearest neighbor query for spatiotemporal road network
时空道路网络连续最近邻查询的新方法
Simulation Study for Consistency of Rosenblatt and Nearest Neighbors Estimates;
Rosenblatt估计与最近邻估计相合性的模拟比较
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号