Taking network simplex method,Lagrangian relaxation and heuristic methods as the main research methods,a approximate solution was got.
通过一个混和整数规划模型来描述该问题,利用网络单纯形法、拉格朗日松弛算法以及试探法为主要研究方法,有效地得到该问题一个近似程度较高的可行解。
Taking network simplex method and lagrangian relaxation and heuristic method as the mai.
首先不考虑时间约束,通过一个混和整数规划模型来加以描述,以网络单纯形法、拉格朗日松弛算法以及试探法为主要研究方法,有效地得到在没有时间约束条件下的一个近似程度较高的可行解;再在所得结果的基础上进行修正直到得出满足时间约束的可行解。
Lagrangian relaxation with network simplex method is used to get a lower bound of the problem,and furthermore,get a feasible solution to the problem by a heuristic method.
通过一个混和整数规划模型来描述这个问题,并利用拉格朗日松弛结合网络单纯形法得到原问题的一个下界,利用该下界结合试探法得到原问题的可行解。
A fuzzy synthesis method for multicomponent distillation sequences is proposed to deal with the contradictory rules in applying the heuristic method.
1 弓 言 精馏序列的合成方法大体上可分为数学规划法和探试法两大类「”。
Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients;
用试探方程法求变系数非线性发展方程的精确解
Using trial equation method,we reduced a shallow water equation to the elementary integral forms,and obtained their abundant exact traveling wave solutions,which included rational function solution,solitary wave solutions,triangle function periodic solutions and Jacobian elliptic function periodic solutions.
利用试探方程法,将流体力学浅水波方程约化成积分形式,得到丰富的精确行波解。
Using trial equation method,we have reduced(1+1)-dimensional Camassa-Holm equation to the elementary integral and obtained its abundant exact traveling wave solutions which includes triangular function solutions and hyperbolic function solutions.
利用试探方程法将1+1维Camassa-Holm方程化成了可求解的不定积分形式,进而求出其精确解,包括三角函数型周期解和双曲函数型解。
Based on the homogeneous balance method and trial function method,two trial func- tion methods of exponential functions are presented.
在齐次平衡法、试探函数法的基础上,给出指数函数所组成的两种试探函数法,并借助符号计算系统Mathematica构造了Hybrid-Lattice系统、mKdV差分微分方程、Ablowitz-Ladik-Lattice系统等非线性离散系统的新的精确孤波解。
Based on the trial function method,a new trial function method combined with exponential functions is presented and applied to the nonlinear discrete system.
本文在试探函数法的基础上,给出由指数函数所组成的试探函数法,将其应用于非线性离散系统,借助符号计算系统Mathematica构造了Hybrid-Lattice系统的新的精确孤波解。
The paper concerns with Fisher equation,and the authors construct some new exact solutions by using the trial function method.
利用试探函数法构造了n维Fisher方程的几个新的精确解,并运用常微分方程定性理论讨论了行波解的稳定性。
Solving the Generalized KdV Equation by Applying the Improved Trial Function Method;
用改进的试探函数法求解广义KdV方程
Solving the Boussinesq Equation by Means of the Improved Trial Function Method;
用改进的试探函数法求解Boussinesq方程
Search for the Soliton Solution to the KdV Equationby Means of Trial Function Method;
用试探函数法求KdV方程的孤子解
Function Teaching Method of the Relation betwween Thermodynamics Functions;
热力学函数间关系的函授教育方法探讨
THE SHORT-LEG SHEAR WALL ELEMENT BASED ON THE ANALYTICAL TRIAL FUNCTION METHOD
基于解析试函数法的短肢剪力墙单元
Primary Study on the Reform of Teaching Method of the Course Real Function;
《实变函数》课程教学方法的改革初探
The Study of Master Function's Solution on Constant Coefficient Linear Recursion Equations
关于常系数线性递推数列的母函数求法探究
A Method to Obtain Derivation on Subsectional Points of Subsectional Function;
探究分段函数在分段点处导数的一种求法
Probing into the Teaching Method on Derivative Calculation of Two Kinds of Special Function;
两类特殊函数的导数计算教学方法的探讨
Test Function Method Aplied in Nonliear PDEs;
试验函数法在非线性偏微分方程中的应用
Idetifying the Laurent Expansion Form of Analytic Functions;
试论解析函数洛朗展开式形式的确定方法
AIRY STRESS FUNCTION METHOD FOR ANALYTIC SOLUTION OF STRESS FIELD DURING BRAZILIAN DISC TEST
巴西劈裂试验应力场解析解应力函数解法
Research of Normal Distribution Function in the Questions Difficult Allocation Algorithm
正态分布函数在试题难度分配算法中的研究
Research on Evolutionary Testing Optimization Based on Penalty Function
基于惩罚函数的演化测试优化方法研究
Approach to Actual Function;
普通高师《实变函数》课程教学方法改革初探
The New Study on Contents of Complex Variable Function and Its Teaching Methods;
复变函数论教学内容与教学方法的新探
Construction and Application of Quality Cost Function
关于质量成本函数构建方法的探讨及应用
DFT=Diagnostic Function Test
【计】诊断函数[功能]测试
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号