A large quantity of blast furnace slag discharged in Laiwu Steel Company causes serious environmental pollution.
莱钢每年排放大量的高炉矿渣造成了严重的环境污染,利用高炉矿渣生产微晶玻璃受到国内外的广泛关注。
Replacement of pebbles with blast furnace slag for roadbed and road base cannot only solve the problem of transportation and construction cost,but can solve the problem of pollutions caused by abandoned blast furnace slag,which is significant for the alleviating material shortage,increasing the value of slag,comprehensive utilization and protection of the ecological environment.
高炉矿渣代替碎(卵)石作为公路路基、路面基层材料既可解决材料运距长、建设成本高的问题,又能解决被废弃高炉矿渣占用大量土地资源并对环境造成严重污染的问题,对缓解路用材料短缺,提高矿渣价值和综合利用率,以及保护生态环境等方面具有重大意义。
In view of both the understanding of the double-interface sealing system and the basic analysis of the chemical and physical properties of blast furnace slag(BFS),a set of experimental facilities was developed for the simulation of interfacial bonding in cementing,and experimental evaluation was conducted on the performance of blast furnace slag cement system by bond strength simulation test.
基于对双界面封固系统的认识和对高炉矿渣物化特性的分析,研制了用于模拟固井界面胶结的试验装置,利用胶结强度模拟试验等方法评价了高炉矿渣水泥体系的性能。
The flyash and slag, with standard sand as aggregate, were used as principal mat erials to prepare mineral polymer.
以粉煤灰,高炉矿渣为粉体原料,标准砂为骨料,采用振动成型方法,在蒸压釜中蒸压养护9h(养护温度为192℃),制备了矿物聚合材料。
Glass-ceramic was made from the slag of Bao-Steel Corporation in Shanghai by body crystallization.
以宝钢高炉矿渣为原料整体析晶法制备矿渣微晶玻璃,通过DTA确定微晶玻璃的热处理制度,通过XRD确定玻璃的主晶相,利用SEM观察微晶玻璃的显微形貌,并对微晶玻璃的抗折强度进行测试。
The method of preparing slag micro-crystallographic foamed glass by using blast-furnace slag,fly ash and waste glass as the main raw materials was discussed based on the composition range of micro-crystallographic foamed glass.
目的利用高炉矿渣、粉煤灰和废玻璃为原材料制备矿渣微晶泡沫玻璃,在确定微晶泡沫玻璃配方范围的基础上,对制备微晶泡沫玻璃的核化和晶化工艺参数进行了优化,使之具有轻质高强的优良性能。
In the mixture with sulphur-rich tailings, the hydration reaction of blast-furnace slag has been studied by IR, XRD and SEM in order to understand the formation dynamics of ettringite.
用红外光谱、X射线衍射和扫描电子显微等现代微观微区测试手段 ,对高炉矿渣及含硫高的矿山尾矿砂混合体系的水化反应过程进行检测和分析 ,了解这一过程中新、旧物相的变化情况 ,通过对主要新生相钙矾石的生长和生成量的检测 ,选出理想的激发剂和合适的养护时间 ,从而给出以高炉矿渣作粘合剂 ,以富硫尾矿砂作骨料研制新型建筑材料的具体工艺条件。
A comparison study has been made between the properties of blast-furnace slag powders (BFSP) ground in a φ750 mm×2 500 mm closed ball mill and in a vertical mill, respectively.
就小型立磨和闭路球磨 (75 0 m m× 2 5 0 0 m m) 2种粉磨系统制备的高炉矿渣粉体的基本特性进行了比较研究。
expanding product
(多指膨胀矿渣)膨胀制品
Study on Expansion and Tenacity Character in Oil-well Cement Mixing Slag;
具有膨胀和增韧性能的矿渣油井水泥的研究
Investigation on behavior of slag to thermal expansion of cement
磨细矿渣对水泥基材料热膨胀性能影响的研究
Research on the Engineering Properties and Embankment Model Expansion Deformation of Steel Slag;
钢渣工程特性及钢渣路堤模型膨胀变形研究
The preparation of a high activated and slight expansive admixture base on steel slag and the study on its performance
钢渣基高活性微膨胀掺合料的制备与性能研究
The Experimental Research on Expansive Agent for Concrete DE_(0-500) Prepared by Industrial Waste
工业废渣制备的膨胀剂DE_(0-500)的试验研究
Preliminary Study on Preparation of Expansive Agents Using Industrial Wastes
利用工业废渣制备混凝土膨胀剂的初步研究
Effect of Steel Slag Sand on Fluidity and Volume Expansibility of Mortar
钢渣砂对砂浆流动性能和膨胀性能的影响
Bentonite is an expandable three-layer clay mineral.
皂土是一种可膨胀的土层粘土矿物。
Effects of Additives on Reduction Swelling of Iron Ore Pellets
添加熔剂对球团矿还原膨胀率的影响
PREPARATION OF GLASS-CERAMICS WITH LOW THERMAL EXPANSION COEFFICIENT BY USING TAILINGS OF SPODUMENE
利用锂辉石尾矿研制低膨胀微晶玻璃
Through experiments, we studied the expansive soil on its mineral and expansiveness, and explored the principium of modification by mixing with lime.
对采自汉中的膨胀土的矿物成分、膨胀性等特性进行了试验研究,探讨了石灰改良膨胀土的机理。
secondary expansion
(使用时膨胀) 二次膨胀
Of, relating to, or capable of expansion.
膨胀的关于膨胀的或有膨胀特征的
Iron ore pellets-Determination of relative free swelling index
GB/T13240-1991铁矿球团相对自由膨胀指数的测定方法
A Study on the Reduction-swelling Behaviors of Brazilian Carajas Hematite Pellets
巴西卡拉加斯赤铁矿球团还原膨胀性能研究
Effects of Gangues on Reduction Swelling Character of Iron Ore Pellets;
脉石成分对铁矿球团还原膨胀性能的影响
Research Progress in Antiperoviskite Negative Thermal Expansion Mn_3XN
反钙钛矿结构负热膨胀Mn_3XN材料的研究进展
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号