A dynamic renormalization-group theory is applied to analyze the anomalously dynamic scaling property of the kinetic roughening growth equation of the conservative and non-conservative Kardar-Parisi-Zhang equations.
采用表面界面生长方程动力学标度奇异性的动力学重整化群理论,研究了守恒和非守恒Kardar-Parisi-Zhang(KPZ)方程的动力学标度奇异性。