A new proof for properties of positive matrix;
关于正矩阵性质的一种新证法
Bounds for maximum eigenvalue of positive matrix
正矩阵最大特征值的估计
By means of similarity transformation upon positive matrix,a new algorithm as well as its corresponding numerical solution illustration for finding the maximum eigenvalues of positive matrices are given.
通过对正矩阵进行相似变换,给出了求正矩阵最大特征值的一种新的算法和相应的数值例子。
Resilient functions are constructed by applying orthogonal array .
相关免疫函数和正交矩阵的研究是等价的 。
The relationships between the dual distance of the code and the correlation-immune order are dis cussed in this paper,and a sufficient and necessary condition for the orthogonal array is derived.
本文讨论了码的对偶距离和相关免疫阶之间的关系,并且给出了正交矩阵的一个充要条件。
Several equivalent conditions of a normal matrix
正规矩阵若干判定及性质
The factorization of a complex skew-symmetric normal matrix,which is similar to a complex symmetric normal matrix,was demonstrated using a logically similar method.
提出一个复矩阵是对称酉矩阵的充要条件,并用逻辑上类似的方法证明一个类似于复对称正规矩阵的复斜对称正规矩阵的分解,最后对复斜对称矩阵得到了类似于复对称矩阵Takagi分解的结论。
The eigenvalues of a normal matrix are not sensitive to its elements perturbation.
基于正规矩阵特征值对其元素变化的不敏感性,讨论线性系统极点的正规配置问题,即设计状态反馈控制律,将闭环控制系统极点配置到期望位置的同时使闭环状态矩阵为正规矩阵,从而达到增强控制系统的鲁棒性的目的。
The method of constructing the sign patterns that allow orthogonal matrix is given.
给出蕴含正交矩阵的符号模式的一种构造方法,并证明了一类给定符号模式蕴含正交矩阵,最后对蕴含正交矩阵的符号模式中零元的个数进行了研究。
Research on the fast calculation model of positive definite matrix in-situ replacement;
正定矩阵原位替换快速解算模型研究
A sufficient condition of determination a real symmetry matrix into a positive definite matrix;
判定实对称矩阵为正定矩阵的一个充分条件
Oppenheim s inequality over real Symetric positive definite matrix;
实对称正定矩阵上的Oppenheim不等式
Beginning with the basic conceptualism,an optimizing mode is employed to decide weight in general condition and obtained a series of weight methods of covariance matrix which is positive matrix.
文章引入了加权平均量的自收敛性来描绘被评价分数的随机变量的稳定性,以概率论理论为基础,得到了一般情况下权重系数确定的优化模型和协方差矩阵为正定矩阵的一系列的确定权的方法,建立了一套较完整的确定权重系数的理论。
The coefficient matrix of the equations is a kind of positive matrix.
这种方程组的系数矩阵是正定矩阵 ,可用平方根法求解。
According to the definition of subde finite positive matrix, which given by C.
根据 Johnson给出的亚正定矩阵的定义 ,给出了一个关于亚正定矩阵的充分条件 。
A Note on the Decomposition of Compelex Orthogonal Matrix
关于复正交矩阵的一个分解式的注记
The Contragradient Transformation Model in Vector Group Orthogonalization(Matrix);
向量组(矩阵)正交化的合同变换模型
A Simple Rectangular Matrix Orthogonalizing Method-Elementary Transformation;
一个简便的向量组(矩阵)正交化方法
Orthogonal Diagonal Decomposition and Moore-Penrose Inverses of o-Symmetrix Matrix
o-对称矩阵的正交对角分解及Moore-Penrose逆
Biorthogonal bivariate vector-valued wavelet packets with dilation matrix
矩阵伸缩的二元向量值双正交小波包
The matrix extension for the construction of biorthogonal trivariate wavelets
构建三元双正交小波的矩阵扩充方法
It can ensure unitary column orthogonality for the resulting matrix sequence.
该方法可确保迭代矩阵列的单位列正交性.
Solving the Optimal Portfolio of Singular Covariance Matrix by Orthogonal Linear Transformation
正交变换求解奇异协方差矩阵的投资组合问题
This article is to investigate biorthogonal matrix-valued wavelet packets in higher dimensions.
研究高维矩阵值双正交小波包的构造及性质。
Some Researches on Orthogonal Projection Iterative Methods for Solving Some Constrained Matrix Equations;
求解约束矩阵方程的正交投影迭代法研究
Least-square Solutions of Inverse Problem for Symmetric Orthogonal Matrices;
对称正交对称矩阵反问题的最小二乘解
Application of Standard Form of Real Symmetric Matrix under the Orthogonal Similarity Transformation;
实对称矩阵正交相似变换标准形的应用
Matrix Expressions on Orthogonal Bases under Lorentz Transformation;
任意正交曲线坐标基矢洛仑兹变换的矩阵表示
The Array Theory Of The Experimental Stress Analysis Of The Orthotropic Photoelastics;
正交异性光弹性实验应力分析的矩阵理论
Some Discussion on Schmidt s orthogonalization by Matrix Method;
关于利用矩阵方法简化Schmidt正交化过程的研究
Orthonormal Random Beamforming with Multiple Beam Matrices
多波束矩阵下的正交随机波束成型方法
An Iterative Method for the Symmetric Ortho-symmetric Solutions of a Class of Matrix Equation
一类矩阵方程的对称正交对称解的迭代法研究
Symmetric Ortho-symmetric Least Square Solutions of One Kind of Matrix Equation
一类矩阵方程的对称正交对称最小二乘解
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号