The integrated absorption cross-sections at 810 nm and the stimulated-emission cross-sections at 1.
在室温下测量和分析了掺钕浓度不同的钨酸钾钆(KGW)晶体的荧光光谱,利用Judd-Ofelt理论研究了Nd3+掺杂浓度的原子百分数为5%的KGW晶体不同轴向的吸收光谱和荧光光谱,计算结果表明通光方向沿着晶体的a轴向相对于b轴向和c轴向在810 nm处的积分吸收截面和在1。
The integration of fractal interpolation surface function on various scales;
不同尺度下分形插值曲面函数的积分
Maple 11 s Application in the Integration;
Maple11在积分中的应用
Indefinite integral of binary fractal interpolating function;
二元分形插值函数的不定积分
A Nonlinear Servo Control Method Based on Integral Backstepping Scheme;
一种基于积分反推原理的非线性伺服控制方法
A practical vector integral in three dimensions sphere shell;
三维球壳空间矢势积分的求解
Objective To develop the diagnosis value of electrophoresis scanning integral calculus of serum proteins in various kidney diseases.
目的 探讨REP高压快速蛋白电泳扫描积分对肾脏疾病的诊断和鉴别诊断价值。
The writer gives the proof of rectangle area and derives integral calculus.
给出了矩形面积的证明,并由此推出了面积积分。
Odd and even function’s integral calculation is a kind of particular operation in integral calculus,if the character of odd and even function can be applied flexibly in the process of calculating,it will play a role of simplifying calculation.
奇偶函数的积分计算是积分学中的一种特殊运算,在计算过程中如能巧用奇偶函数的性质,往往可以起到化难为易、简化计算的作用。
The asymptote behavior of intermediate point in the Mean Value Theorem for integrals;
关于积分中值定理的中间值的渐进性质
Based on numerical integrals, the model parameters are estimated from the differential equation without iterations, the method is very effective in overcoming large amounts of measurement noise in the output.
提出一种简单但鲁棒性强的传感器动态建模方法,该方法基于数值积分思想,能有效克服测量噪声,无需迭代即可直接从微分方程辨识出模型参数,所建模型阶次较低、准确度较高,且较易实现递推算法,为传感器改善动态特性、实现动态补偿提供一种有效方法。
Here′s a continuous study about paper of Cai-ping Yang,Yan-nuan Jia and otherwise on the asymptotic behavior of the intermediate value in the value theorem for integrals as the length of integral interval tends to zero.
继续杨彩萍、贾云暖等人对积分中值定理的中值当区间长度趋于零时的渐近性研究,这里又得到系列新结果。
本网站所收集内容来自网友分享仅供参考,实际请以各学校实际公布信息为主!内容侵权及错误投诉:1553292129@qq.com
CopyRight © 2020-2024 优校网[www.youxiaow.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024058711号